Abstract:
A photonic crystal waveguide for conveying light with an input end and an output end to supply for an electromagnetic spectrometer includes: an input end having a convex envelope of a cross-section of the waveguide at the input end, which envelope defines a circular shape or a shape of a regular polygon with n1 corners, wherein n1 is a natural number bigger than 3; an output end having a cross-section that defines a slit shape; and a plurality of photonic crystal fibers, wherein an arrangement of the plurality of photonic crystal fibers defines the cross-sections at the input and output ends.
Abstract:
An optical slit device that combines microelectromechanical design techniques, semiconductor laser technology, and micro-optics to provide a spectrometer entrance slit on a semiconductor substrate with integrated calibration light sources, which integrated light enters the entrance slit and is transmitted down the same optical path as a light source under test and by which the spectrometer can be wavelength calibrated in situ is disclosed.
Abstract:
In an example, an Echelle grating wavelength division multiplexing (WDM) device includes a first waveguide, a slab waveguide, multiple second waveguides, an Echelle grating, and a metal-filled trench. The first waveguide includes either an input waveguide or an output waveguide. The multiple second waveguides are optically coupled to the first waveguide through the slab waveguide. The multiple second waveguides include multiple output waveguides if the first waveguide includes the input waveguide or multiple input waveguides if the first waveguide includes the output waveguide. The Echelle grating includes multiple grating teeth formed in the slab waveguide. The metal-filled trench forms a mirror at the grating teeth to reflect incident light from the first waveguide toward the multiple second waveguides or from the multiple second waveguides toward the first waveguide.
Abstract:
A system and method for internally inspecting a tubular composite part so as to identify and measure adhesive flow therewithin are provided, along with an endpoint adapter assembly of a near infrared (NIR) spectrometer. The system includes an end point adapter that fits within and maintains a consistent cross-sectional position within the tubular composite part. The system also includes a plurality of optical fibers extending radially outward from the end point adapter. The end point adapter moves longitudinally through the tubular composite part and receives light with the plurality of optical fibers following interaction of the light with the tubular composite part. The system further includes a NIR imaging spectrometer configured to disperse the light being collected by the plurality of optical fibers across an NIR spectrum and a NIR camera configured to generate images of the tubular composite part based on dispersed light.
Abstract:
A connector assembly is provided for coupling optical fibers to a spectrometer. The connector assembly includes a plate having a slit defined therein and a ferrule that secures end portions of the optical fibers therein. The ferrule includes a forward end having an aperture that receives the optical fibers. The connector assembly further includes a connector housing having an alignment mechanism with a plate recess dimensioned to receive the plate therein and a ferrule recess dimensioned to receive the forward end of the ferrule therein. The plate recess orients the plate and the ferrule recess orients the ferrule within the connector assembly that includes a spring for imparting a force urging the forward end of the ferrule into contact with the plate to minimize an air gap between the plate and the ferrule. The spring and the alignment mechanism maintain the ferrule in an x-y-z, rotation, and/or an angular orientation.
Abstract:
A connector assembly is provided for coupling optical fibers to a spectrometer. The connector assembly includes a plate having a slit defined therein and a ferrule that secures end portions of the optical fibers therein. The ferrule includes a forward end having an aperture that receives the optical fibers. The connector assembly further includes a connector housing having an alignment mechanism with a plate recess dimensioned to receive the plate therein and a ferrule recess dimensioned to receive the forward end of the ferrule therein. The plate recess orients the plate and the ferrule recess orients the ferrule within the connector assembly that includes a spring for imparting a force urging the forward end of the ferrule into contact with the plate to minimize an air gap between the plate and the ferrule. The spring and the alignment mechanism maintain the ferrule in an x-y-z, rotation, and/or an angular orientation.
Abstract:
A fiber optic probe assembly is provided. The probe comprises a first optical system and a second optical system, a delivery light guide comprising one or more than one delivery optical fiber for transmitting excitation radiation from a radiation source disposed at a proximal end of the light guide to the first optical system. The first optical system comprising one or more than one first optical element for forming a substantially collimated illumination beam from the excitation radiation. An optically opaque tubular sleeve is fitted over the first optical system to optically isolate the first optical system and the delivery light guide from the second optical system. The second optical system comprising one or more than one second optical element for gathering optical radiation scattered from a sample and forming the optical radiation into a collection beam. A collection light guide comprising one or more than one collection optical fiber receives the collection beam and transmits the collection beam to an analyzer. The first and second optical systems are disposed within a housing so that an emission cone of the first optical system and an acceptance cone of the second optical system substantially overlap. A spectroscopic measurement system comprising the optic fiber probe is also provided.
Abstract:
A spectroscopic unit and spectroscopic device according to the present invention are provided with a filter that is provided with a plurality of optical filter elements disposed in order from the entrance side to the exit side of light under measurement and has different transmission wavelengths corresponding to entrance positions along a first direction. A first optical filter element from among the plurality of optical filter elements is tilted with respect to a second optical filter element disposed adjacently to the first optical filter element as a result of the first optical filter element being rotated by a prescribed angle with a third direction that is perpendicular to both the first direction and s second direction from the entrance side to the exit side as the axis of rotation thereof or being rotated by a prescribed angle with the first direction as the axis of rotation thereof.
Abstract:
The present disclosure provides for a system and method for detecting unknown materials. A test data set, which may comprise a hyperspectral data set, is generated representative of a first location. The test data set may be analyzed to determine a second location which may be interrogated using a Raman spectroscopic device to generate a Raman data set. The Raman data set may be analyzed to associated an unknown material with a known material such as: a chemical material, a biological material, an explosive material, a hazardous material, a drug material, and combinations thereof.
Abstract:
A system and method for the detection and identification of explosives and explosive residues using a combination of SWIR, Raman, and LIBS spectroscopy techniques, including imaging. A region of interest may be surveyed to identify a target area, wherein the target area comprises at least one unknown material. This surveying may be accomplished using visible imagery or SWIR imagery. The target area may be interrogated using Raman spectroscopy and LIBS spectroscopy to identify the unknown material. SWIR techniques may also be used to interrogate the target area. Fusion algorithms may also be applied to visible images, SWIR data sets, Raman data sets, and/or LIBS data sets.