Abstract:
An LED light device and a circuit preparation method thereof are provided. The LED light device includes a base, an LED light unit, and a lamp shade. The LED light-emitting unit and the lamp shade are arranged on the base. The lamp shade covers the LED light-emitting unit inside. The circuit preparation method includes following steps of: providing a base which is a physical entity having a three-dimensional structure on the surface thereof; coating a circuit layer on the base surface through a programmable coating equipment, manual coating or the combined mode, wherein the circuit layer is a liquid or powder coating containing metal materials, and the thickness of the circuit layer is 20 μm or more; baking the base coated with the circuit layer at the high temperature of 100-1,000° C. until the circuit layer is dried; and obtaining a base having a three-dimensional circuit after cooling.
Abstract:
A method of forming conductive traces on insulated substrate includes the steps of providing an insulated substrate; forming a coating layer on a surface of the insulated substrate, dividing the coating layer into traces-forming zones and non-traces-forming zones through laser engraving, and removing areas of the coating layer that are located in the traces-forming zones through laser-vaporizing to expose corresponding portions of the surface of the insulated substrate; forming a metallized layer of conductive traces by performing a metallizing treatment on the exposed portions of the insulated substrate and on the coating layer; and directly stripping off the residual coating layer from the non-traces-forming zones or removing it using an acid, an alkaline or a neutral solution.
Abstract:
A manufacture method and structure of a curved capacitive touch panel is disclosed. A flat flexible printed circuit board (FPCB) with capacitive touch sensing/detecting capability is provided, followed by subjecting the flat FPCB to compressing molding to form a curved FPCB. Subsequently, a curved substrate is provided, wherein an outer curved surface of the curved FPCB is bonded to an inner curved surface of the substrate, thereby forming the curved capacitive touch panel.
Abstract:
A liquid immersion transfer process for applying electronics on a 3D object and a system is disclosed. In one embodiment, the process comprises providing a foil on a solid carrier in a foil provision stage, providing electronic wiring and an electronic component to the foil in an electronics provision stage, to provide said electronics, removing the solid carrier and arranging the foil on or in a liquid in a liquid application stage, and transferring the electronics to the 3D object in a transfer stage, as well as a 3D object obtainable by such process.
Abstract:
A layered structure for use with a high power light emitting diode system comprises an electrically insulating intermediate layer interconnecting a top layer and a bottom layer. The top layer, the intermediate layer, and the bottom layer form an at least semi-flexible elongate member having a longitudinal axis and a plurality of positions spaced along the longitudinal axis. The at least semi-flexible elongate member is bendable laterally proximate the plurality of positions spaced along the longitudinal axis to a radius of at least 6 inches, twistable relative to its longitudinal axis up to 10 degrees per inch, and bendable to conform to localized heat sink surface flatness variations having a radius of at least 1 inch. The top layer is pre-populated with electrical components for high wattage, the electrical components including at least one high wattage light emitting diode at least 1.0 Watt per 0.8 inch squared.
Abstract:
A touch sensor with an ornament includes a transparent substrate with a flat center part and a raised outer rim part, and a film substrate based transparent conductive sensor with a transparent conductive film layer attached to the inner face of the transparent substrate. A transparent conductive film layer circuit of the transparent conductive film layer is formed at the flat center part, and a routing circuit for detecting an electric signal from the transparent conductive film layer circuit and a decorative print layer for concealing the routing circuit are formed at the raised outer rim part.
Abstract:
A non-planar printed circuit board has an interior surface and an exterior surface. Between the interior surface and exterior surfaces are layers of conductive and dielectric materials. Passive and active electrical components are embedded within the interior and exterior surfaces. A hollow region is defined by the interior surface of the non-planar circuit board. The non-planar printed circuit board is manufactured on a mandrel having a non-planar shape such as, for example, a cylinder or sphere so as to form a hollow, curved non-planar structure.
Abstract:
There are provided a rigid flexible printed circuit board and a method of manufacturing the same. The rigid flexible printed circuit board according to an exemplary embodiment of the present disclosure includes: a flexible board including a flexible region, a first rigid region formed at one side of the flexible region, and a second rigid region formed at the other side of the flexible region; a first rigid board formed on the flexible board and formed in the first rigid region and the second rigid region; and a second rigid board formed below the flexible board and formed in the first rigid region.
Abstract:
Provided are an antenna for a communication terminal, and a method of manufacturing the same, the antenna including: a communication terminal case; and a radiator layer formed of a metal material in an inner curved surface part of the communication terminal case.
Abstract:
A multilayer substrate that retains a curved state without causing fluctuations in electrical characteristics includes a main body including a plurality of insulating sheets to be stacked and made of a flexible material. A signal wire extends in the main body. A ground conductor is provided at a positive-direction side in a z-axis direction relative to the signal wire in the main body, and overlaps the signal line in a plan view seen from the z-axis direction. A ground conductor is provided on a negative-direction side in the z-axis direction relative to the signal wire in the main body, and overlaps the signal line in a plan view seen from the z-axis direction. The state in which the main body is curved so that the signal wire defines an arc is retained by plastic deformation of the ground conductors.