Abstract:
A mounting structure, in which semiconductor package 1 and heat sink 8 for dissipating heat generated from semiconductor package 1 are mounted on mounting board 3. The rear surface of semiconductor package 1 is bonded to the front surface of mounting board 3 facing the rear surface. Heat sink 8 is brought into contact with the rear surface of semiconductor package 1 via through-ole 5 formed on mounting board 3. Semiconductor package 1 and heat sink 8 are pressed to each other by the elastic force of clip 6.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting a first adhesive on the base including inserting the post through an opening in the first adhesive, mounting a conductive layer on the base including aligning the post with an aperture in the conductive layer, providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, then flowing a second adhesive into and downward in a gap between the post and the conductive trace, solidifying the second adhesive, then mounting a semiconductor device on a heat spreader that includes the post and the base, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
An electro-thermal separation light emitting diode light engine module includes a heat dissipater, an illuminating module and a printed circuit board. The illuminating module is provided on the heat dissipater and is provided with at least one contact end. The printed circuit board is transfixed with at least one hole for accepting the illuminating module and is provided with a circuit for electrically connecting the contact end. Therefore, the illuminating module can be cooled directly through the heat dissipater and can be connected electrically by the circuit of the printed circuit board, achieving the practical progressiveness by providing a better heat dissipation effect and reducing cost.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a copper layer on the adhesive including aligning the post with an aperture in the copper layer, then flowing the adhesive into and upward in a gap located in the aperture between the post and the copper layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal, a silver coating and a copper core that is a selected portion of the copper layer, mounting a semiconductor device on the post, wherein an aluminum heat spreader includes the post and the base, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a post and a base. The semiconductor device extends into a cavity in the post, is electrically connected to the conductive trace and is thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, and the base extends laterally from the post. The adhesive extends between the post and the conductive trace and between the base and the conductive trace. The conductive trace is located outside the cavity and provides signal routing between a pad and a terminal.
Abstract:
A light-emitting device assembly which can be used in many applications has a contact carrier, at least one light-emitting device, a heat sink and at least one securing member. The contact carrier has a light-emitting device receiving region and resilient contacts which are provided proximate to the light-emitting device receiving region. The at least one light-emitting device has leads which extend therefrom to mechanically and electrically engage the resilient contacts. The heat sink is thermally coupled to the at least one light-emitting device. The at least one securing member extends through the contact carrier and into the heat sink to releasably retain the contact carrier and the at least one light-emitting device in position relative to each other and relative to the heat sink.
Abstract:
The present invention provides a method of making a semiconductor chip assembly that includes providing a post and a base, mounting an adhesive on the base including inserting the post through an opening in the adhesive, mounting a substrate on the adhesive including inserting the post into an aperture in the substrate to form a gap in the aperture between the post and the substrate, then flowing the adhesive into and upward in the gap, solidifying the adhesive, then mounting a semiconductor device on a heat spreader that includes the post and the base, electrically connecting the semiconductor device to the substrate and thermally connecting the semiconductor device to the heat spreader. The substrate includes first and second conductive layers and a dielectric layer therebetween and provides horizontal signal routing between a pad and a terminal at the first conductive layer.
Abstract:
There is provided an electronic component which comprises an insulating member on which an electronic element is mounted, and a thermal diffusion member on which the insulating member is mounted, wherein a thermal expansion coefficient of the insulating member is lower than a thermal expansion coefficient of the thermal diffusion member, and the insulating member is mounted in an embedded manner in a recess formed on a surface of the thermal diffusion member.
Abstract:
An illumination system includes a light source unit including a light source and a circuit substrate electrically connected to the light source. The light source is placed in the circuit substrate such that at least part of the light source overlaps the circuit substrate in the thicknesswise direction of the circuit substrate.
Abstract:
Magnetic field distribution and mutual capacitance control for transmission lines are provided. A first circuit board is fabricated by attaching a reference plane layer to a dielectric material layer, and attaching a first trace to the second surface of the dielectric material. A surface profile of the reference plane layer is modified to decrease a resistance of a return current signal path through the reference plane layer, to reduce a magnetic field coupling between the first trace and a second trace. A second circuit board is fabricated by attaching a reference plane layer to a dielectric material layer, attaching a trace to the dielectric material, and forming a solder mask layer on the dielectric material layer over the trace. An effective dielectric constant of the solder mask layer is modified to reduce or increase a mutual capacitance between the first trace and a second trace on the dielectric material.