Abstract:
An optical detection apparatus includes a housing having a circumferential opening therein. A primary mirror reflects light rays to form a first set of light rays to a secondary mirror that has a generally concave shape coupled to the housing. A tertiary mirror having a generally concave shape coupled to the housing spaced apart from the secondary mirror directs light to detection optics that form an image using the third set of light rays. The detection optics include a micro-mirror array that redirect the image to a detector. A controller controls the micro-mirror array and determines an event characteristic based upon the image thereon.
Abstract:
A spectrograph usable as a demultiplexer/detector in a wavelength division multiplexing optical system. The spectrograph comprises a planar waveguide and a detector array. The planar waveguide has a dispersive edge having an inwardly concave shape, an input edge, and a straight output edge. The dispersive edge has a reflective diffraction grating formed on it, the grating having a variable line spacing. An optical input signal comprising a plurality of different wavelength ranges enters the waveguide at the input edge, and travels through the waveguide and strikes the grating. The grating focuses the optical energy in each of the wavelength ranges at a focal spot at the output edge, the position of each focal spot being a function of wavelength. The detector array comprises a plurality of photodetectors positioned along a straight line, such that the photodetectors are positioned at the focal spots. Each photodetector therefore detects the optical energy in one of the input ranges. A stack of such planar waveguides may be assembled to form a multi-channel spectrograph.
Abstract:
A system, method, and apparatus for a super resolution radar image extraction procedure are disclosed. The super-resolution imaging radar (SRIR) system involves a pulse signal generator, an array bucket detector, an ancilla beam detector, and a coincidence circuit. The pulse signal generator propagates N number of bursts of radio frequency (RF) energy, where each burst contains M number of dithered pulses. The pulses are propagated towards an object of interest and the ancilla beam detector. The array bucket detector collects pulses that are reflected from the object. The ancilla beam detector scans in a direction of the dithered pulses, and collects the dithered pulses. The coincidence circuit calculates a cross-time correlation function from the pulses that are collected by the array bucket detector and the ancilla beam detector. The coincidence circuit sums cross-time correlation function results to generate pixels of an image of the object.
Abstract:
A system, apparatus, and method are disclosed for a super-resolution imaging radar (SRIR). The SRIR employs a pulse signal generator that propagates bursts of radio frequency (RF) energy. Each burst contains a number of pulses. One pulse of each burst is an ancilla pulse, and the remaining pulses are propagated towards an object. An array bucket detector (ABD) collects pulses that are reflected from the object. Also, the ancilla pulses are propagated through a virtual lens. A virtual scanning detector detects the virtual ancilla electric field. A processor calculates a virtual ancilla electric field, which would be present at the scanning detector. Further, a coincidence circuit calculates a cross-time correlation function of the electric fields of the reflected pulses that are collected by the ABD and the virtual ancilla electric field. The coincidence circuit uses cross-time correlation function results to generate pixels of an image of the object.
Abstract:
An object that might be at least partially obscured is imaged. Frequency-entangled photons are generated. The frequency-entangled photons include photons having first and second frequencies. Those photons having the first frequency can pass through the obscuration and illuminate the object. Photons scattered by the object and those photons having the second frequency are used to form an image by considering coincidences in time of arrival.
Abstract:
An ultraviolet laser generates a coherent beam, which is downconverted to produce pairs of frequency-entangled photons. For each entangled pair, a first photon is sent along a first path and a second photon is sent along a second path. A first detector detects those photons sent along the first path, and a second detector detects those photons sent along the second path. The detection is performed in a single photon regime. Coincidence counting is performed on outputs of the detectors, including comparing leading edges on outputs of the first and second detectors within a time window.
Abstract:
An optical detection apparatus includes a housing having a circumferential opening therein. A primary mirror reflects light rays to form a first set of light rays to a secondary mirror that has a generally concave shape coupled to the housing. A tertiary mirror having a generally concave shape coupled to the housing spaced apart from the secondary mirror directs light to detection optics that form an image using the third set of light rays. The detection optics include a micro-mirror array that redirect the image to a detector. A controller controls the micro-mirror array and determines an event characteristic based upon the image thereon.
Abstract:
An optical detection apparatus includes a housing having a circumferential opening therein. A primary mirror reflects light rays to form a first set of light rays to a secondary mirror that has a generally concave shape coupled to the housing. A tertiary mirror having a generally concave shape coupled to the housing spaced apart from the secondary mirror directs light to detection optics that form an image using the third set of light rays. The detection optics include a micro-mirror array that redirect the image to a detector. A controller controls the micro-mirror array and determines an event characteristic based upon the image thereon.
Abstract:
The invention performs coordinate measurement employing multiple-frequency intensity-modulated laser radar. A laser diode source is intensity modulated by variation of its excitation current. Its output beam is directed to a target using scanning mirrors or other opto-mechanical means, and the light returned from the target is detected. The modulation frequency is alternated between two or more values, creating a dataset of several relative phase measurements that uniquely determine the distance to the target without ambiguity. A device for carrying out such a method includes a laser whose output is modulated by a high frequency signal generator, optics for directing the output signal to the target to a detector, a signal generator which generates reference signals offset in frequency from the intensity modulation frequencies by a predetermined amount; mixers for combining the return signals with the reference signals to form a first set of intermediate frequency signals, and for combining the modulation signals with the reference signals to form a second set of intermediate frequency signals, and a computer which calculates phase differences between the output beam and the return signals for each modulation frequency from the intermediate frequencies, and determines the distance to the target from the phase differences.