Abstract:
A frame, a spectroscope, a spectrometry unit, and an image forming apparatus. The frame has hollow structure and includes at least four apertures including a first aperture, a second aperture, a third aperture through which light enters the frame, and a fourth aperture, a concave diffraction grating disposed at a position of the first aperture, and a movable reflector disposed at a position of the second aperture to reflect light dispersed by the concave diffraction grating and change a reflection angle of the reflected light. Through the fourth aperture of the frame, the light reflected by the movable reflector exits the frame. The spectroscope includes the frame, and the frame further includes an optical entrance disposed at a position of the third aperture, and an optical exit disposed at a position of the fourth aperture.
Abstract:
The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (COGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. The location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or a first anchor output slit even with large beam diffraction angle from the entrance slit or input slit, the second one being specific for a particular design goal of a curved-grating spectrometer.
Abstract:
An analysis apparatus for analyzing a specimen comprises a spectral separator for dispersing spatially an electromagnetic wave introduced from the specimen into spectral components, a sensing element array containing plural sensing elements for sensing the spectral components of the electromagnetic wave dispersed spatially by the spectral separator, and a spectrum calculator for calculating the spectrum from the signal sensed by the sensing elements; the sensing element array having sensitivities different to each of the spectral components of the electromagnetic wave dispersed spatially by the spectral separator, and the spectral separator and the sensing element array being placed so as to receive the spectral components by each of the sensing elements at different incident angles.
Abstract:
An optical device includes an imaging device for imaging an incident beam onto a focal surface, and a support element which includes at least one side having a shape corresponding to the focal surface, where the side is located on the focal surface. The invention also includes a sensor array in close contact with the side of the support element having the shape of the focal surface.
Abstract:
An imaging optical system having a Rowland geometry can be used in a spectrometer for X-ray fluorescence. For the focusing of the X-ray beam emanating from the specimen to be analyzed use is made of a curved analyzer crystal 28 whose radius of curvature may be variable, as in the case of a crystal surface 29 in the form of a logarithmic spiral 40. If such an analyzer crystal is to be made sufficiently large so as to achieve adequate intensity in the X-ray detector, a part of the crystal would have to be given a radius of curvature which is smaller than permissible so as to avoid fracturing of the crystal. In accordance with the invention, a first part 40 of the reflective surface 29 has a radius of curvature which is dependent on the location on the crystal whereas another part 42 of the reflective surface has a constant radius of curvature 44. A crystal part having a constant radius of curvature exhibits angular deviations, but for as long as these angular deviations are smaller than a given (not very low) limit value, they can be ignored in relation to other, larger deviations of the log spiral part. Such larger deviations occur notably when a multilayer mirror is chosen for the analyzer crystal 28.
Abstract:
A spectrometer that determines a spectral correlation between an optical signal and a reference spectra over a broad spectral range while maintaining a relatively high resolution. The spectrometer uses a mask that has high resolution slits at wavelengths corresponding to the reference spectra. Relative oscillatory movement is induced between the mask and the imaged spectra of the optical signal is induced and the light passing through the slits is collected by an optical sensor. A lock-in amplifier monitors a signal from the optical sensor as well as a signal representative of the oscillatory movement and determines a correlation between them.
Abstract:
The invention relates to a spectrometer useful in analytical spectroscopy. The spectrometer has an imaging diffraction grating, a planar receiver system, and an element for flattening the image field, wherein the improvement comprises that a body of low refractive power and perceptible secondary spectrum is used as the element for flattening the image field, said body having at least two optically active surfaces, and is disposed between the entry slit and the diffraction grating.
Abstract:
The instant invention relates to a process and apparatus for atomic absorption analysis, utilizing: atomization of a sample (containing one or more elements), illuminating the atomized sample with a continuum light source to produce a resultant light, directing the resultant light through a light dispersing means, detection of light at the focal plane of the light dispersing means using an integrating array detector (e.g. linear photodiode array) for converting the incident light into amplified electrical signals, blocking the incident light from striking the detector means and during this blocking utilizing the detector means to convert integrated intensities into amplified electrical signals, and deriving from these signals a value proportional to concentration. The present invention permits the aforementioned analysis to be performed at a very high rate i.e. at least 40 times per second.
Abstract:
A Rowland circle-type polychromator with the Rowland circle arc pivotally connected to the concave grating. Separate adjustments are provides for shifting the spectral lines and focussing. A tie rod is used to adjust the focus of the spectral lines. Dectectors are predeterminedly spaced along the arc to simultaneously detect unique spectral lines for analysis of multiple elements contained in a single sample.
Abstract:
A constant deviation monochromator with a holographically formed concave grating and entrance and exit slits positioned on opposite sides of the plane including the Rowland circle of the grating, wherein the grating has been formed by using two coherent light sources positioned on the same side of the Rowland plane, whereby aberrations and stray light are substantially reduced.