Abstract:
A method of applying a silicide to a substrate while minimizing adverse effects, such as lateral diffusion of metal or “piping” is disclosed. The implantation of the source and drain regions of a semiconductor device are performed at cold temperatures, such as below 0° C. This cold implant reduces the structural damage caused by the impacting ions. Subsequently, a silicide layer is applied, and due to the reduced structural damage, metal diffusion and piping into the substrate is lessened. In some embodiments, an amorphization implant is performed after the implantation of dopants, but prior to the application of the silicide. By performing this pre-silicide implant at cold temperatures, similar results can be obtained.
Abstract:
An improved method of performing pocket or halo implants is disclosed. The amount of damage and defects created by the halo implant degrades the performance of the semiconductor device, by increasing leakage current, decreasing the noise margin and increasing the minimum gate voltage. The halo or packet implant is performed at cold temperature, which decreases the damage caused to the crystalline structure and improves the amorphization of the crystal. The use of cold temperature also allows the use of lighter elements for the halo implant, such as boron or phosphorus.
Abstract:
A method (and semiconductor device) of fabricating a semiconductor device utilizes a thermal proximity correction (TPC) technique to reduce the impact of thermal variations during anneal. Prior to actual fabrication, a location of interest (e.g., a transistor) within an integrated circuit design is determined and an effective thermal area around the location is defined. Thermal properties of structures intended to be fabricated within this area are used to calculate an estimated temperature that would be achieved at the location of interest from a given anneal process. If the estimated temperature is below or above a predetermined target temperature (or range), TPC is performed. Various TPC techniques may be performed, such as the addition of dummy cells and/or changing dimensions of the structure to be fabricated at the location of interest (resulting in an modified thermally corrected design, to suppress local variations in device performance caused by thermal variations during anneal.
Abstract:
A method of forming a FinFET device. The method may include providing a substrate having a single crystalline region, heating the substrate to a substrate temperature effective for dynamically removing implant damage during ion implantation, implanting ions into the substrate while the substrate is maintained at the substrate temperature, and patterning the single crystalline region so as to form a single crystalline fin.
Abstract:
A method (and semiconductor device) of fabricating a semiconductor device utilizes a thermal proximity correction (TPC) technique to reduce the impact of thermal variations during anneal. Prior to actual fabrication, a location of interest (e.g., a transistor) within an integrated circuit design is determined and an effective thermal area around the location is defined. Thermal properties of structures intended to be fabricated within this area are used to calculate an estimated temperature that would be achieved at the location of interest from a given anneal process. If the estimated temperature is below or above a predetermined target temperature (or range), TPC is performed. Various TPC techniques may be performed, such as the addition of dummy cells and/or changing dimensions of the structure to be fabricated at the location of interest (resulting in an modified thermally corrected design, to suppress local variations in device performance caused by thermal variations during anneal.
Abstract:
A method of processing to a substrate while minimizing cost and manufacturing time is disclosed. The implantation of the source and drain regions of a semiconductor device are performed at low temperatures, such as below 273° K. This low temperature implant reduces the structural damage caused by the impacting ions. Subsequently, the implanted substrate is activated using faster forms of annealing. By performing the implant at low temperatures, the damage to the substrate is reduced, thereby allowing a fast anneal to be used to activate the dopants, while eliminating the majority of the defects and damage. Fast annealing is less expensive than conventional furnace annealing, and can achieve higher throughput at lower costs.
Abstract:
A method of processing to a substrate while minimizing cost and manufacturing time is disclosed. The implantation of the source and drain regions of a semiconductor device are performed at low temperatures, such as below 273° K. This low temperature implant reduces the structural damage caused by the impacting ions. Subsequently, the implanted substrate is activated using faster forms of annealing. By performing the implant at low temperatures, the damage to the substrate is reduced, thereby allowing a fast anneal to be used to activate the dopants, while eliminating the majority of the defects and damage. Fast annealing is less expensive than conventional furnace annealing, and can achieve higher throughput at lower costs.