Abstract:
A reflective type beam splitting and combining device comprises a cubic prism set and three light valves. A first dielectric thin film and a second dielectric thin film are formed on diagonal tangential planes of two sets of opposed surfaces of the prism set so that the prism set can reflect or transmit two light beams of the three primary colors incident from two incidence faces, respectively. The three light valves are arranged on three adjacent surfaces of the prism set to let every two of them be adjacent to each other. The three light valves are used for modulating the three primary colors transmitted or reflected by the prism set. Finally, the three primary color lights are assembled into an output light beam by the prism set. The above optical structure can effectively shorten the back focus to shrink the size and reduce the difficulty in manufacturing.
Abstract:
A metallic photonic box capable of intensifying light at a certain wavelength, includes: a metallic surrounding forming a resonance chamber; and an insulator layer, disposed in the resonance chamber, having a predetermined dimension defining a cut-off wavelength, which inhibits light of a wavelength greater than the cut-off wavelength from resonating, whereby when the metallic photonic box is heated to generate light radiation, the light radiation is intensified at a wavelength rage predetermined by the cut-off wavelength.
Abstract:
The present invention discloses a method of improving an electroluminescent efficiency of a MOS device by etching a semiconductor substrate thereof. A chemical etching process is performed to remove surface states or surface defects located on the surface of a silicon substrate before a nanoparticle layer and a conducting layer is formed on the silicon substrate, in order that the non-radiative electron-hole recombination centers located on the surface of silicon substrate is suppressed. Accordingly, the percentage of radiative electron-hole recombination is heightened and the electroluminescent efficiency of a MOS light emitting device is drastically enhanced. Advantageously, the chemical etching step is able to create a nanostructure on the surface of the silicon substrate to increase the probability of the collision of electron-hole pairs and phonons, and the electroluminescent efficiency of a MOS light emitting device is improved as well.
Abstract:
The present invention relates to a method for producing silicon waveguides on non-SOI substrate (non-silicon-on-insulator substrate), and particularly relates to a method for producing silicon waveguides on silicon substrate with a laser. This method includes the following steps: (1) forming a ridge structure with high aspect ratio on a non-SOI substrate; (2) melting and reshaping the ridge structure by laser illumination for forming a structure having broad upper part and narrow lower part; and (3) oxidizing the structure having broad upper part and narrow lower part to form a silicon waveguide.
Abstract:
A suspension or solution for an organic optoelectronic device is disclosed. The composition of the suspension or solution includes at least one kind of micro/nano transition metal oxide and a solvent. The composition of the suspension or solution can selectively include at least one kind of transition metal oxide ions or a precursor of transition metal oxide. Moreover, the method of making and applications of the suspension or solution are also disclosed.
Abstract:
A method for forming a thin-film transistor (TFT) includes providing a substrate, forming a first patterned conducting layer on the substrate, forming an organic dielectric layer on the first patterned conducting layer and the substrate, forming a seeding layer on the organic dielectric layer, using the seeding layer as a crystal growing base to form an inorganic semiconductor layer on the seeding layer, and forming a second patterned conducting layer on the inorganic semiconductor layer.
Abstract:
A suspension or solution for an organic optoelectronic device is disclosed. The composition of the suspension or solution includes at least one kind of micro/nano transition metal oxide and a solvent. The composition of the suspension or solution can selectively include at least one kind of transition metal oxide ions or a precursor of transition metal oxide. Moreover, the method of making and applications of the suspension or solution are also disclosed.
Abstract:
The present invention discloses a micro/nanostructure PN junction diode array thin-film solar cell and a method for fabricating the same, wherein a microstructure or sub-microstructure PN junction diode array, such as a nanowire array or a nanocolumns array, is transferred from a source-material wafer to two pieces of transparent substrates, which are respectively corresponding to two electric conduction types, to fabricate a thin-film solar cell. In the present invention, the micro/nanostructure PN junction diode array has advantages of a fine-quality crystalline semiconductor, and the semiconductor substrate can be reused to save a lot of semiconductor material. Besides, the present invention can make the best of sunlight energy via stacking up the solar cells made of different types of semiconductor materials to absorb different wavebands of the sunlight spectrum.
Abstract:
An organic-inorganic lighting device and a method for fabricating the same is disclosed. Firstly, a conductive substrate is provided, and an inorganic conducting film layer and a seed layer are formed in turn on the conductive substrate. Next, an array of micro and nano zinc oxide wire is formed on the seed layer by using properties of the seed layer. Finally, an electrode layer is formed on the array of micro and nano zinc oxide wire. The invention solves the problem of low mobility of electrons in inorganic materials.
Abstract:
A flexible optoelectronic device having inverted electrode structure is disclosed. The flexible optoelectronic device having inverted electrode structure includes a flexible plastic substrate having a cathode structure, an n-type oxide semiconductor layer, an organic layer, and an anode. The n-type oxide semiconductor layer is disposed on the cathode structure. The organic layer is disposed on the n-type oxide semiconductor layer. The anode is electrically connected with the organic layer.