Abstract:
A method for manufacturing a silicon nitride thin film comprises a step of charging silane, ammonia gas and nitrogen gas at an environment temperature below 350° C. to produce and deposit a silicon nitride thin film, wherein a rate of charging silane is 300-350 sccm, a rate of charging ammonia gas is 1000 sccm, a rate of charging nitrogen gas is 1000 sccm; a power of a high frequency source is 0.15˜0.30 KW, a power of a low frequency source is 0.15˜0.30 KW; a reaction pressure is 2.3˜2.6 Torr; a reaction duration is 4˜6 s. The above method for manufacturing a silicon nitride thin film provides a preferable parameter range and preferred parameters for generating a low-stress SIN thin film at low temperatures, achieves manufacture of a low-stress SIN thin film at low temperatures, and thus, better satisfies the situation requiring a low-stress SIN thin film.
Abstract:
Provided is a manufacturing method for a laterally diffused metal oxide semiconductor device, comprising the following steps: growing an oxide layer on a substrate of a wafer (S210); coating a photoresist on the surface of the wafer (S220); performing photoetching by using a first photoetching mask, and exposing a first implantation window after development (S230); performing ion implantation via the first implantation window to form a drift region in the substrate (S240); coating one layer of photoresist on the surface of the wafer again after removing the photoresist (S250); performing photoetching by using the photoetching mask of the oxide layer of the drift region (S260); and etching the oxide layer to form the oxide layer of the drift region (S270). Further provided is a laterally diffused metal oxide semiconductor device.
Abstract:
A method for wafer etching in a deep silicon trench etching process includes the following steps: a. electrostatically absorbing a wafer using an electrostatic chuck, and stabilizing the atmosphere required by the process (S110); b. performing the sub-steps of a main process for the wafer, and the time for the sub-steps of the main process being shorter than the time required by the wafer main process; c. releasing the electrostatic adsorption of the electrostatic chuck on the wafer; d. determining whether the cumulative time of the sub-steps of the main process reaches a predetermined threshold or not, if so, performing the step e (S150), and if not, repeating the operations in the steps a to c (S140); and e. ending a wafer manufacturing process. The etching method avoids the wafer from continuous contact with the electrostatic chuck, reduces electrostatic accumulation on the surface of the wafer, and therefore solves the problem of resist reticulation on the surface of the wafer in the DSIE process.
Abstract:
A photolithography method and system based on a high step slope are provided. The method includes: S1, manufacturing a sacrificial layer with a high step slope on a substrate; S2, adopting a spin-on PR coating process to cover the sacrificial layer with a photoresist layer to form a photolithographic layer; S3, forming a mask pattern and a compensation pattern on a mask; and S4, performing photolithography processes, by a photolithography machine, on the photolithographic layer. By forming a slope-top compensation pattern and a slope compensation pattern on a mask to perform photolithography on the substrate of a sacrificial layer, a relatively wide compensation pattern is set in a part of the top of the slope with a small thickness, thereby compensating the overexposure at the top of the slope, reducing the error in the photolithographic pattern, and improving the precision of photolithography of the high step slope.
Abstract:
A method for manufacturing a silicon nitride thin film comprises a step of charging silane, ammonia gas and nitrogen gas at an environment temperature below 350° C. to produce and deposit a silicon nitride thin film, wherein a rate of charging silane is 300-350 sccm, a rate of charging ammonia gas is 1000 sccm, a rate of charging nitrogen gas is 1000 sccm; a power of a high frequency source is 0.15˜0.30 KW, a power of a low frequency source is 0.15˜0.30 KW; a reaction pressure is 2.3˜2.6 Torr; a reaction duration is 4˜6 s. The above method for manufacturing a silicon nitride thin film provides a preferable parameter range and preferred parameters for generating a low-stress SIN thin film at low temperatures, achieves manufacture of a low-stress SIN thin film at low temperatures, and thus, better satisfies the situation requiring a low-stress SIN thin film.
Abstract:
A method for manufacturing a semiconductor thick metal structure includes a thick metal deposition step, a metal patterning step, and a passivation step. In the thick metal deposition step, a Ti—TiN laminated structure is used as an anti-reflection layer to implement 4 μm metal etching without residue. In the metal patterning step, N2 is used for the protection of a sidewall to implement on a 4 μm metal concave-convex structure a tilt angle of nearly 90 degrees, and a main over-etching step is added to implement the smoothness of the sidewall of the 4 μm metal concave-convex structure. A half-filled passivation filling structure is used to implement effective passivation protection of 1.5 um metal gaps having less than 4 um of metal thickness. Manufacturing of the 4 μm thick metal structure having a linewidth/gap of 1.5 μm/1.5 μm is finally implemented.
Abstract:
A high-voltage Schottky diode and a manufacturing method thereof are disclosed in the present disclosure. The diode includes: a P-type substrate and two N-type buried layers, a first N-type buried layer is located below a cathode lead-out area, and a second N-type buried layer is located below a cathode region; an epitaxial layer; two N-type well regions located on the epitaxial layer, a first N-type well region is a lateral drift region and it is provided with a cathode lead-out region, and a second N-type well region is located on the second N-type buried layer and it is a cathode region; a first P-type well region located on the second N-type buried layer and surrounding the cathode region; a field oxide isolation region located on the lateral drift region; an anode located on the cathode region and a cathode located on the surface of the cathode lead-out region.
Abstract:
An electrostatic discharge protection structure includes: substrate of a first type of conductivity, well region of a second type of conductivity, substrate contact region in the substrate and of the first type of conductivity, well contact region in the well region and of the second type of conductivity, substrate counter-doped region between the substrate contact region and the well contact region and of the second type of conductivity, well counter-doped region between the substrate contact region and the well contact region and of the first type of conductivity, communication region at a lateral junction between the substrate and the well region, first isolation region between the substrate counter-doped region and the communication region, second isolation region between the well counter-doped region and the communication region, oxide layer having one end on the first isolation region and another end on the substrate, and field plate structure on the oxide layer.
Abstract:
A photolithography system based on a high step slope may include a depositing unit configured to manufacture a sacrificial layer having high step slope on a substrate. The system may also include a coating unit configured to coat a photoresist layer on the sacrificial layer by performing a spin-on PR coating process to form a photolithographic layer. The system may further include a photolithography unit configured to perform one or more photolithography processes to the photolithographic layer. The photolithography unit may comprise a plurality of masks of compensation patterns. The compensation pattern may comprise a slope-top compensation pattern and a slope compensation pattern.
Abstract:
A semiconductor rectifying device includes a substrate of a first conductivity type, an epitaxial layer of the first conductivity type, a filling structure, an upper electrode, a guard ring, and a guard layer. The epitaxial layer defines a plurality of trenches thereon. The filling structure includes an insulating material formed on the inner surface of the trench and a conductive material filled in the trench. A doped region of a second conductivity type is formed in the surface of the epitaxial layer between the filling structures. A method of manufacturing a semiconductor rectifying device includes forming an epitaxial layer of a first conductivity type on a substrate of the first conductivity type, defining a plurality of trenches on the epitaxial layer, forming a plurality of filling structures in the plurality of trenches, and forming a doped region in the epitaxial layer between the filling structures.