Abstract:
An electrostatic discharge protection structure includes: substrate of a first type of conductivity, well region of a second type of conductivity, substrate contact region in the substrate and of the first type of conductivity, well contact region in the well region and of the second type of conductivity, substrate counter-doped region between the substrate contact region and the well contact region and of the second type of conductivity, well counter-doped region between the substrate contact region and the well contact region and of the first type of conductivity, communication region at a lateral junction between the substrate and the well region, first isolation region between the substrate counter-doped region and the communication region, second isolation region between the well counter-doped region and the communication region, oxide layer having one end on the first isolation region and another end on the substrate, and field plate structure on the oxide layer.
Abstract:
An electrostatic discharge protection structure includes: substrate of a first type of conductivity, well region of a second type of conductivity, substrate contact region in the substrate and of the first type of conductivity, well contact region in the well region and of the second type of conductivity, substrate counter-doped region between the substrate contact region and the well contact region and of the second type of conductivity, well counter-doped region between the substrate contact region and the well contact region and of the first type of conductivity, communication region at a lateral junction between the substrate and the well region, first isolation region between the substrate counter-doped region and the communication region, second isolation region between the well counter-doped region and the communication region, oxide layer having one end on the first isolation region and another end on the substrate, and field plate structure on the oxide layer.
Abstract:
An electrostatic discharge protection structure includes: substrate of a first type of conductivity, well region of a second type of conductivity, substrate contact region in the substrate and of the first type of conductivity, well contact region in the well region and of the second type of conductivity, substrate counter-doped region between the substrate contact region and the well contact region and of the second type of conductivity, well counter-doped region between the substrate contact region and the well contact region and of the first type of conductivity, communication region at a lateral junction between the substrate and the well region, first isolation region between the substrate counter-doped region and the communication region, second isolation region between the well counter-doped region and the communication region, oxide layer having one end on the first isolation region and another end on the substrate, and field plate structure on the oxide layer.
Abstract:
A semiconductor device for electrostatic discharge protection includes a substrate, a first well and a second well formed in the substrate. The first and second wells are formed side by side, meeting at an interface, and have a first conductivity type and a second conductivity type, respectively. A first heavily doped region and a second heavily-doped region are formed in the first well. A third heavily doped region and a fourth heavily-doped region are formed in the second well. The first, second, third, and fourth heavily-doped regions have the first, second, second, and first conductivity types, respectively. Positions of the first and second heavily-doped regions are staggered along a direction parallel to the interface.
Abstract:
An electrostatic discharge protection structure includes: substrate of a first type of conductivity, well region of a second type of conductivity, substrate contact region in the substrate and of the first type of conductivity, well contact region in the well region and of the second type of conductivity, substrate counter-doped region between the substrate contact region and the well contact region and of the second type of conductivity, well counter-doped region between the substrate contact region and the well contact region and of the first type of conductivity, communication region at a lateral junction between the substrate and the well region, first isolation region between the substrate counter-doped region and the communication region, second isolation region between the well counter-doped region and the communication region, oxide layer having one end on the first isolation region and another end on the substrate, and field plate structure on the oxide layer.
Abstract:
A semiconductor device for electrostatic discharge protection includes a substrate, a first well and a second well formed in the substrate. The first and second wells are formed side by side, meeting at an interface, and have a first conductivity type and a second conductivity type, respectively. A first heavily doped region and a second heavily-doped region are formed in the first well. A third heavily doped region and a fourth heavily-doped region are formed in the second well. The first, second, third, and fourth heavily-doped regions have the first, second, second, and first conductivity types, respectively. Positions of the first and second heavily-doped regions are staggered along a direction parallel to the interface.