Abstract:
A laser system and method. The inventive laser includes an annular gain medium; a source of pump energy; and an arrangement for concentrating energy from the source on the gain medium. In a more specific implementation, a mechanism is included for rotating the gain medium to effect extraction of pump energy and cooling. In the illustrative embodiment, the pump source is a diode array. Energy from the array is coupled to the medium via an array of optical fibers. The outputs of the fibers are input to a concentrator that directs the pump energy onto a pump region of the medium. In the best mode, plural disks of gain media are arranged in an offset manner to provide a single resonator architecture. First and second mirrors are added to complete the resonator. In accordance with the inventive teachings, a method for pumping and cooling a laser is taught. In the illustrative embodiment, the inventive method includes the steps of providing a gain medium; pumping energy into a region of the gain medium; moving the medium; extracting energy from the region of the medium; and cooling region of the medium.
Abstract:
A robust scalable laser. The laser includes plural fiber laser resonators. A cavity that is external to the fiber laser resonators combines plural laser beams output from the plural fiber laser resonators into a single output laser beam. In a specific embodiment, the plural fiber laser resonators are eye-safe double-clad Er:YAG laser resonators that are pumped via laser diode arrays.
Abstract:
In one embodiment, a quantum dot based radiation source includes a housing having a wall defining a cavity therein, a plurality of quantum dots disposed on an inner surface of the wall of the housing, and a radiation excitation source in optical communication with the housing and configured to output radiation to excite the plurality of quantum dots to emit radiation in a desired wavelength range. The quantum dot based radiation source can be used in a calibration system or calibrator, for example to calibrate a detector.
Abstract:
A laser with a spectral converter. The novel laser includes a spectral converter adapted to absorb electromagnetic energy in a first frequency band and re-emit energy in a second frequency band, and a laser gain medium adapted to absorb the re-emitted energy and output laser energy. The spectral converter includes a plurality of quantum dots having an emission spectrum matching an absorption spectrum of the gain medium. In an illustrative embodiment, the spectral converter is adapted to convert broadband energy to narrowband energy, and the gain medium is a REI-doped solid-state laser gain medium.
Abstract:
A standoff bioagent-detection apparatus and method use a direct ultraviolet source to detect bioagents. In some embodiments, a standoff bioagent-detection apparatus and method use laser-induced fluorescence to determine the presence of a biological agent having an aromatic-protein shell, such as Tryptophan. In some embodiments, multi-wavelength differential laser-induced fluorescence helps reduce false alarm caused by naturally occurring interferants. In some embodiments, a full range of ultraviolet wavelengths is initially simultaneously generated to fluoresce Tryptophan to determine if an ambient level is excessive. When the ambient level is excessive, individual ultraviolet wavelengths may be generated in differential pairs and the detected fluorescence levels may be correlated with atmospheric absorption levels for Tryptophan to determine if a bioagent is highly likely to be present.
Abstract:
A standoff bioagent-detection apparatus and method use a direct ultraviolet source to detect bioagents. In some embodiments, a standoff bioagent-detection apparatus and method use laser-induced fluorescence to determine the presence of a biological agent having an aromatic-protein shell, such as Tryptophan. In some embodiments, multi-wavelength differential laser-induced fluorescence helps reduce false alarm caused by naturally occurring interferants. In some embodiments, a full range of ultraviolet wavelengths is initially simultaneously generated to fluoresce Tryptophan to determine if an ambient level is excessive. When the ambient level is excessive, individual ultraviolet wavelengths may be generated in differential pairs and the detected fluorescence levels may be correlated with atmospheric absorption levels for Tryptophan to determine if a bioagent is highly likely to be present.
Abstract:
An ultra-low heat laser that does not rely on florescence cooling. Generally, the inventive laser includes a pump source operable at a pump frequency and a gain medium disposed to receive energy from the source and lase at a frequency close to the pump frequency. In the illustrative embodiment, the laser is a solid state laser having a gain medium which is resonantly pumped to lase at a frequency within 5% of the pump frequency. However, in the best mode and in accordance with the present teachings, the gain medium lases at a frequency within 1% of the pump frequency. In the illustrative embodiment, the laser gain medium ion has a rich Stark energy level structure and the laser active gain medium has oscillator strengths at transitions wavelengths that allow an ultra-low quantum defect operation. The pump source has a wavelength output centered to correspond to a predetermined pump band and an emission band subtended by an absorption bandwidth thereof.
Abstract:
A laser system and method. The inventive laser includes an annular gain medium; a source of pump energy; and an arrangement for concentrating energy from the source on the gain medium. In a more specific implementation, a mechanism is included for rotating the gain medium to effect extraction of pump energy and cooling. In the illustrative embodiment, the pump source is a diode array. Energy from the array is coupled to the medium via an array of optical fibers. The outputs of the fibers are input to a concentrator that directs the pump energy onto a pump region of the medium. In the best mode, plural disks of gain media are arranged in an offset manner to provide a single resonator architecture. First and second mirrors are added to complete the resonator. In accordance with the inventive teachings, a method for pumping and cooling a laser is taught. In the illustrative embodiment, the inventive method includes the steps of providing a gain medium; pumping energy into a region of the gain medium; moving the medium; extracting energy from the region of the medium; and cooling region of the medium.
Abstract:
A laser gain medium. The novel laser gain medium includes a host material, a plurality of quantum dots dispersed throughout the host material, and a plurality of laser active ions surrounding each of the quantum dots. The laser active ions are disposed in close proximity to the quantum dots such that energy absorbed by the quantum dots is non-radiatively transferred to the ions via a Forster resonant energy transfer, thereby exciting the ions to produce laser output. In an illustrative embodiment, each quantum dot is surrounded by an external shell doped with the laser active ions.
Abstract:
A laser gain medium and laser system include a host material, a plurality of quantum dots dispersed throughout the host material, and a plurality of laser active ions surrounding each of the quantum dots. The laser active ions are disposed in close proximity to the quantum dots such that energy absorbed by the quantum dots is transferred to the ions, thereby exciting the ions to produce laser output. In an illustrative embodiment, each quantum dot is surrounded by an external shell doped with the laser active ions.