Abstract:
A heat exchanger for cooling an array of electric circuit chips disposed on a common substrate is formed as a flexible sheet of thermally conducting material with understanding fins for transference of heat from the chips to a coolant flowing through the fins. Pin fins may be employed with air coolant. The sheet may be provided with corrugations set between sites of the chips for improved flexibility to accommodate individual orientations of the chips. The sheet is sufficiently large to cover an array of chips and is thermally joined, as by use of a thermally conductive grease, to the chips. The sheet hermetically seals the chips from contamination by the coolant. For liquid coolant, the heat exchanger may be fabricated of copper with a nickel coating, wherein the copper provides the heat conduction and the nickel protects the copper from a corrosive coolant such as water. In one embodiment of the heat exchanger, the fin thickness, the fin spacing and the sheet thickness are all approximately equal, a typical sheet thickness being approximately two mils. Another embodiment uses air cooling, and uses metal pin fins bonded to a metal sheet which is moderately thin and flexible. Transverse motion between the sheet and the array of chips is introduced concurrently with the application of pressure between the sheet and the chips to reduce the thickness of the layers of grease between the chips and the sheet, thereby to improve thermal conductivity between the heat exchanger and each of the chips.
Abstract:
This invention employs a carrier upon which a thin conductive film has been applied. The conductive film is of a metallic material which exhibits a surface energy such that it is not readily wetted by solder. A patterned mask is disposed on the conductive film, with the mask having openings which expose selected areas of the conductive film. Solder is deposited in the mask openings and is weakly adherent to the exposed areas of the conductive film. The carrier is then disposed over and in registration with conductive land areas of a circuit carrier, such that the solder in the mask openings is aligned with the land areas of the circuit carrier. Subsequently, the carrier and circuit land areas are brought into contact, heated, the solder bonded to the lands, and the carrier is lifted away for subsequent reuse.In another species of the invention, a thin film layer of solder is directly deposited on and weakly adherent to a flexible base layer. Subsequently, tool means which registers with the areas to be soldered, presses the base layer/solder combination against the areas to be coated with solder, thereby causing the solder to adhere to the underlying circuit configuration.
Abstract:
A manifold for conducting coolant to a set of heat exchangers mounted on individual electric circuit chips of a circuit module is formed of a solid body containing fluid passages terminating in apertures, the manifold being provided with a set of hollow flexible appendages connected to the apertures for conducting coolant to ports of the heat exchangers. The body is formed of two sections, one section having channels machined therein to serve as the fluid passages, and a second section having the apertures. The second section also is bounded by sidewalls which define a cavity. The appendages are formed by a lost wax molding operation wherein the wax is stored in the cavity, and milled to form a mold for the appendages. A plastic material is deposited on the wax mold and on the second section of the body to form the set of appendages, the plastic material being of a type which can be deposited by the process of chemical vapor deposition, thereby to provide a conformal deposition which imparts a water-tight characteristic to the manifold.
Abstract:
In electrical circuitry, and particularly superconducting circuitry including Josephson tunnelling devices, it is often necessary to provide solder contacts to electrical lines, where the electical lines would be destroyed if there were interdiffusion between the lines and the solder. To avoid this problem, a laterally extending metallic layer is used as a diffusion barrier between the solder land and the electrical line which can be a superconducting line. The diffusion barrier is comprised of a refractory metal which has a first portion electrically contacting the solder land and a second, laterally displaced portion, electrically contacting the electrical line. An insulating protective layer on the diffusion barrier layer separates the solder land and the electrical line. In a specific embodiment, the superconducting electrical line is comprised of an alloy of lead while the diffusion barrier is comprised of niobium, and the solder alloy is a low melting point alloy, typically comprised of indium, bismuth, and tin.
Abstract:
The present invention relates to an improved flex (or TAB) product suitable for silicon carrier or other types of chip carrier applications, wherein the flex reliability problems caused for example by Cu thermal cycling are substantially reduced or eliminated. More particularly, the invention embodies a number of coatings for use in such products and diverse methods of making and using same.
Abstract:
A protection configuration for a semiconductor ridge waveguide laser structure is disclosed wherein layers of protective metal in the form of walls, is applied on each side of the ridge element of the ridged layer of the laser structure. The laser structure is then bonded to a mounting plate in a junction side down orientation by solder or a junction side up orientation by wire bonding. The metal layer may be composed of gold.
Abstract:
The present invention comprises the use of a copper/nickel containing alloy composition or application of a protective nickel alloy coating to copper current-carrying leads to prevent electrolytic migration between tape automated bonding (TAB) package leads.
Abstract:
A flex or TAB product suitable for chip carrier applications wherein the flex reliability problems caused by copper dendrite growth and lead bending during power and thermal cycling are reduced by application of special coatings to lead areas of the flex tape.
Abstract:
A heat exchanger for cooling an array of electric circuit chips disposed on a common substrate is formed as a flexible sheet of thermally conducting material with upstanding fins for transference of heat from the chips to a coolant flowing through the fins. The sheet may be provided with corrugations set between sites of the chips for improved flexibility to accommodate individual orientations of the chips. The sheet is sufficiently large to cover an array of chips and is secured adheringly, as by use of a thermally conductive grease, to the chips. The sheet hermetically seals the chips from contamination by the coolant. The heat exchanger may be fabricated of copper with a nickel coating, wherein the copper provides the heat conduction and the nickel protects the copper from a corrosive coolant such as water. The finned sheet may be efficiently fabricated by processes analogous to those used to make printed circuits. In one embodiment of the heat exchanger, the fin thickness, the fin spacing and the sheet thickness are all approximately equal, a typical sheet thickness being approximately two mils.