Abstract:
A cam follower for a high-pressure fuel pump of an internal combustion engine, which has a cam roller that is accommodated in a pocket of the cam follower. The cam roller has a bore and the bore is mounted by on a pin which is seated at the ends in receptacles of opposite walls of the pocket. The cam roller runs with its end sides directly in front of the walls. Each end side of the cam roller takes the form of an outer surface of a spherical zone, and each wall is smooth and straight, at least in the region of its run-on piece at the respective end side of the cam roller.
Abstract:
A tappet (1) for a high-pressure fuel pump having a housing (2), the drive input side (7), which serves as a cam run-on face. The housing (2) incorporates a roller (8), wherein the drive output side (3), which serves as a contact surface for a tappet follower part, of said housing (2) bears against an underside (4) of a bridge piece (6) which projects through an inner casing (5) of the housing (2), and a rotation prevention device (11) which projects beyond the outer casing (10) of the housing (2) extends in a window (9) of the housing (2). The rotation prevention device (11) is formed by a radial elongation of the bridge piece (6). A projection extends from the inner casing (5) of the tappet (1) only on a portion situated diametrically opposite the window (7), which projection is integrally connected and is produced by a punching and embossing process and rises in a wedge shape in a direction of the drive input side. The section (13) of the sheet-steel bridge piece (6) which is situated diametrically opposite the radial elongation (12) is snapped over the projection (15), and this section (13) rests with an edge region (14) of the underside (4) thereof on said projection (15).
Abstract:
A mechanical roller tappet (1a, 1b) comprising a tappet housing (2a, 2b) shaped out of sheet metal, a drive roller (3) actuable by a cam (9) and an axle (5a, 5b) on which the drive roller (3) is mounted, end portions (24) of the axle (5a, 5b) being supported in axle eyes (23) of the tappet housing (2a, 2b), said tappet housing (2a, 2b) comprising a tappet skirt (10a, 10b) and a tappet bottom (16) possessing a contact surface (21) for an adjacent engine component on a power take-off side and at an end of the tappet skirt facing the cam, the tappet bottom is connected to the tappet skirt and is shaped into the interior of the tappet skirt while forming a pocket for receiving the drive roller, the axle eyes being arranged in first sections (18) of the tappet bottom while being spaced from an inner peripheral surface (19) of the tappet skirt and extend substantially parallel to the longitudinal direction of the tappet skirt, the contact surface being arranged on a second section (20) of the tappet bottom connecting the first sections to each other.
Abstract:
A tappet (1) for a high-pressure fuel pump having a housing (2), the drive input side (7), which serves as a cam run-on face. The housing (2) incorporates a roller (8), wherein the drive output side (3), which serves as a contact surface for a tappet follower part, of said housing (2) bears against an underside (4) of a bridge piece (6) which projects through an inner casing (5) of the housing (2), and a rotation prevention device (11) which projects beyond the outer casing (10) of the housing (2) extends in a window (9) of the housing (2). The rotation prevention device (11) is formed by a radial elongation of the bridge piece (6). A projection extends from the inner casing (5) of the tappet (1) only on a portion situated diametrically opposite the window (7), which projection is integrally connected and is produced by a punching and embossing process and rises in a wedge shape in a direction of the drive input side. The section (13) of the sheet-steel bridge piece (6) which is situated diametrically opposite the radial elongation (12) is snapped over the projection (15), and this section (13) rests with an edge region (14) of the underside (4) thereof on said projection (15).
Abstract:
A mechanical tappet (101, 201, 301, 401, 501, 601, 701, 801, 901, 1001) is provided, in particular for actuating the lifting of a pump piston (39) of a fuel pump of an internal combustion engine, with a sleeve-shaped tappet housing (102, 202, 302, 402, 502, 602, 702, 902, 1002) constructed as a shaped sheet-metal part and with a driving roller (6) supported so that it can rotate. Here, a bolt (4) supports the driving roller so that it is centered, and end sections (7) of the bolt projecting from the driving roller are supported in bolt eyes (8) of the tappet housing.
Abstract:
The invention proposes a switching element (1) for a valve train of an internal combustion engine, particularly for valve deactivation, with a simple-to-implement measure for adjusting the coupling lash of its coupling means (8) in a receptacle (6) using two retaining rings (19, 20), one of which is stocked in a variety of thicknesses.
Abstract:
The invention proposes a periodically actuable tappet (1) for a valve train, said tappet (1) comprising a hollow cylindrical skirt (2) that can be arranged through an outer peripheral surface (3) in a guide bore (4) of a surrounding structure (5), said skirt (2) comprising a window-type aperture (6) in which a separate anti-rotation device (8) is arranged through a radially inner portion (7), a radially outer portion (9) of the anti-rotation device (8) extending beyond the skirt (2) for guidance in a longitudinal groove (10) that intersects the guide bore (4), wherein the anti-rotation device (8), as viewed in cross-section, is substantially mushroom-shaped, the inner portion (7) has a rectangular cross-section corresponding to a geometry of the aperture (6) of the skirt (2), into which cross-section, the outer portion (9) merges in the manner of a roof through a fractional cylindrical outer peripheral surface (11), inner legs (12) of the outer portion (9) extend beyond the aperture (6) in peripheral direction and bear against the outer peripheral surface (3) of the skirt (2). Through the measures of the invention, a radially inward directed excursion of the anti-rotation device (8) during operation of the tappet (1) is prevented.
Abstract:
A switch element (1) is proposed for valve shut-off, fabricated as cam follower for a plunger rod valve drive of an internal combustion engine, having an outer part (2) and an inner element (4) axially movable in its bore (3) and with rotational security (15) relative to the guided inner element (4). The outer part (2), inside the bore (3), has an annular groove (6), and the inner element (4) has a radial bore (7) with two diametrically opposed pistons (8), which to couple the elements (2, 4) in their axially remote relative position achieved by a lost-motion spring (5) are displaceable towards the annular groove (6). On their cam-side under side, emanating from their radially outward, bulbous face, the pistons (8) segmentwise comprise a plane transverse surface as contact area for a facing under side (27) of the annular groove (6). The latter is intersected by two diametrically opposed oil ports (11) running offset 90° from the pistons (8) in circumferential direction. In addition, the outer part (2) has means (13) for rotationally secured guidance of the switch element (1) relative to a surrounding structure.
Abstract:
In a guide rail for the valve train of an internal combustion engine, having receiving spaces disposed in an elongate body in spaced-apart relationship behind one another and accommodating valve lifters, flats are formed upon the outer surface area of each valve lifter to prevent the lifter from rotating about its central longitudinal axis. These flats are supported by flats of the guide rail which are located within the pertaining receiving space. An inlet bore is assigned to each receiving space of the elongate body for insertion of the valve lifter with an attached trumpet-like end in direction of its longitudinal axis. Subsequently the valve lifter is shifted in axis-parallel relationship to the flats of the guide rail, which act as rotation-inhibiting surfaces, and then is slightly displaced again in axial direction.
Abstract:
A structural assembly (1) for a high pressure fuel pump, with the structural assembly (1) having a tappet (3) connected to a pump piston (2), which bears frontally against a contact surface (7) of an inner side (8) of the bottom (5) of the pump piston (2), the bottom (5) being connected to a guide skirt (10) of the tappet (3). An outer peripheral wall (11) of the pump piston (2) is surrounded near the inner side (8) with radial lash by a bore (12) of a spring plate (13) on whose bottom-distal side (14) a coil compression spring (15) bears for resetting the pump piston (2), and a bottom side (16) of the spring plate (13) is situated opposite an annular surface (17) of an entraining collar (18) on the pump piston (2). The entraining collar (18) is a separate, disk-like element seated on the pump piston (2) with slight axial distance to the spring plate (13), which spring plate (13) possesses a disk section (19) with the bottom side (16) having the bore (12). A concentric bushing (21) projects from the outer edge (20) of the disk section (19) in direction of the bottom (5) and surrounds the entraining collar (18) with radial lash, which bushing (21) merges into an annular collar section (22) that includes the bottom-distal side (14) that supports the coil compression spring (15) and is supported directly on the inner side (8) of the bottom (5), and an outer peripheral wall (23) of the pump piston (2), free of radial collars, is finely machined by centerless grinding.