Abstract:
A roller tappet (1) is proposed for a high-pressure fuel pump of an internal combustion engine, having a housing (2), in the case of the drive-side end (3) of which two surfaces (5) which lie diametrically opposite one another and are depressed by an outer shell (4) of the housing (2) are applied with in each case one receptacle (6), in which surfaces (5) a pin (8) is mounted which carries a cam roller (7), wherein an inner shell (9) of the housing (2), axially below the cam roller (7) as viewed in the direction remote from the drive, is penetrated by a bridge piece (10), the output-side end (11) of which has a rest (12) for a tappet following part, wherein the outer shell (4) of the housing (2) which is non-stepped as least as far as possible apart from the surfaces (5) is provided as a closed circumferential ring (14), as viewed in the drive direction immediately above upper sides (13) of the surfaces (5), which upper sides (13) run through the housing (2) in the manner of chords, which closed circumferential ring (14) is adjoined by the drive-side end (3), and wherein the receptacles (6) are present in the surfaces (5) as cut-outs which emanate from their upper sides (13) and nestle around the pin (8) in the manner of half-shells.
Abstract:
A structural assembly (1) for a high pressure fuel pump, with the structural assembly (1) having a tappet (3) connected to a pump piston (2), which bears frontally against a contact surface (7) of an inner side (8) of the bottom (5) of the pump piston (2), the bottom (5) being connected to a guide skirt (10) of the tappet (3). An outer peripheral wall (11) of the pump piston (2) is surrounded near the inner side (8) with radial lash by a bore (12) of a spring plate (13) on whose bottom-distal side (14) a coil compression spring (15) bears for resetting the pump piston (2), and a bottom side (16) of the spring plate (13) is situated opposite an annular surface (17) of an entraining collar (18) on the pump piston (2). The entraining collar (18) is a separate, disk-like element seated on the pump piston (2) with slight axial distance to the spring plate (13), which spring plate (13) possesses a disk section (19) with the bottom side (16) having the bore (12). A concentric bushing (21) projects from the outer edge (20) of the disk section (19) in direction of the bottom (5) and surrounds the entraining collar (18) with radial lash, which bushing (21) merges into an annular collar section (22) that includes the bottom-distal side (14) that supports the coil compression spring (15) and is supported directly on the inner side (8) of the bottom (5), and an outer peripheral wall (23) of the pump piston (2), free of radial collars, is finely machined by centerless grinding.
Abstract:
A cam follower for a high-pressure fuel pump of an internal combustion engine, which has a cam roller that is accommodated in a pocket of the cam follower. The cam roller has a bore and the bore is mounted by on a pin which is seated at the ends in receptacles of opposite walls of the pocket. The cam roller runs with its end sides directly in front of the walls. Each end side of the cam roller takes the form of an outer surface of a spherical zone, and each wall is smooth and straight, at least in the region of its run-on piece at the respective end side of the cam roller.
Abstract:
A hydraulic support element for a switchable cam follower of a valve drive of an internal combustion engine, which has a pot-like housing with a bore, a pressure piston formed in one piece with an external casing and head projecting over an edge of the housing and a high pressure space for a hydraulic medium. The high pressure space is supplied, via a non-return valve from a first reservoir space, which is fed via first passages in the housing and pressure piston. A second reservoir space is formed in the pressure piston axially above the first reservoir space and is filled by second passages in the housing and pressure piston. From the second reservoir space a hydraulic medium is conducted to the cam follower via an opening in the head. The reservoir spaces are separated by a ball around which the internal wall of the pressure piston is wrapped
Abstract:
The invention proposes a switching element (1) for a valve train of an internal combustion engine, particularly for valve deactivation, with a simple-to-implement measure for adjusting the coupling lash of its coupling means (8) in a receptacle (6) using two retaining rings (19, 20), one of which is stocked in a variety of thicknesses.
Abstract:
The invention relates to a tappet (1) for a high-pressure fuel pump or for a valve drive of an internal combustion engine, comprising a housing (2) which has a cam run-on surface (4) on the drive side (3) thereof, wherein an output side (5) of the housing (2) rests on a lower face (6) of a bridge piece (8) that projects through an inner shell (7) of the housing (2), wherein an anti-turn lug (11) protrudes from the outer shell (10) of the housing (2) and is arranged in a window (9) in the latter, wherein said lug is substantially present as an upright body similar to a semi-cylinder in the region thereof protruding from the housing (2), and the outer surface (15) of said lug, in cross section, results in an ogival curve made up of two or more circular arcs (16).
Abstract:
The invention relates to a tappet (1) for a high-pressure fuel pump or for a valve drive of an internal combustion engine, comprising a housing (2) which has a cam run-on surface (4) on the drive side (3) thereof, wherein an output side (5) of the housing (2) rests on a lower face (6) of a bridge piece (8) that projects through an inner shell (7) of the housing (2), wherein an anti-turn lug (11) protrudes from the outer shell (10) of the housing (2) and is arranged in a window (9) in the latter, wherein said lug is substantially present as an upright body similar to a semi-cylinder in the region thereof protruding from the housing (2), and the outer surface (15) of said lug, in cross section, results in an ogival curve made up of two or more circular arcs (16).
Abstract:
A roller tappet (1) is proposed for a high-pressure fuel pump of an internal combustion engine, having a housing (2), in the case of the drive-side end (3) of which two surfaces (5) which lie diametrically opposite one another and are depressed by an outer shell (4) of the housing (2) are applied with in each case one receptacle (6), in which surfaces (5) a pin (8) is mounted which carries a cam roller (7), wherein an inner shell (9) of the housing (2), axially below the cam roller (7) as viewed in the direction remote from the drive, is penetrated by a bridge piece (10), the output-side end (11) of which has a rest (12) for a tappet following part, wherein the outer shell (4) of the housing (2) which is non-stepped as least as far as possible apart from the surfaces (5) is provided as a closed circumferential ring (14), as viewed in the drive direction immediately above upper sides (13) of the surfaces (5), which upper sides (13) run through the housing (2) in the manner of chords, which closed circumferential ring (14) is adjoined by the drive-side end (3), and wherein the receptacles (6) are present in the surfaces (5) as cut-outs which emanate from their upper sides (13) and nestle around the pin (8) in the manner of half-shells.
Abstract:
The invention proposes a switching element (1) for a valve train of an internal combustion engine, particularly for valve deactivation, with a simple-to-implement measure for adjusting the coupling lash of its coupling means (8) in a receptacle (6) using two retaining rings (19, 20), one of which is stocked in a variety of thicknesses.
Abstract:
A wing gap closure flap is positioned in an aircraft wing so that a gap between the wing structure and the leading edge of a landing flap can be closed during normal cruising positions of the landing flap and opened when the landing flap is in a starting position or in a landing position. The gap is formed on the underside of the aircraft wing and the gap closure flap is operated by a positioning shaft which itself is driven through a drive lever linkage by the drive shaft for the landing flap. The wing gap closure flap is connected through a lever mechanism to the positioning shaft which is preferably divided into shaft sections where a plurality of wing gap closure flaps are used. Each shaft section is driven by the landing flap drive shaft. A defined motion of the wing gap closure flap or flaps is achieved in that the positioning of the wing gap closure flaps is synchronized in a limited angular range with the positioning of the landing flap by the cooperation of the respective drive mechanisms.