Abstract:
The porosities of subsurface earth formations surrounding a borehole are investigated using a logging tool run in the wellbore by repeatedly irradiating the formations with discrete bursts of high energy neutrons, measuring the populations of epithermal neutrons at near and far locations from the neutron source, and also measuring the rate of decay of the epithermal neutron population at a third location following each neutron burst and deriving therefrom a measurement of the epithermal neutron slowing down time. Formation porosity values derived from the near-and-far location population measurements are corrected for detector standoff effects by use, in accordance with a predetermined empirical relationship, of the epithermal slow down time measurement. Alternatively, formation porosities may be derived both from the near-and-far location measurements and from the epithermal slowing down time measurement, and the two differently-derived porosity values may be used independently to provide enhanced information of formation porosity or they may be compared to derive a standoff-corrected porosity value.
Abstract:
The present invention provides systems and methods capable of improving the efficiency and effectiveness of leaching operations. In one embodiment, the present invention may utilize a coiled tubing directional drilling system capable of treating interior portions of the heap/formation. In one embodiment, the present invention may utilize a system and method capable of capturing real time temperature and resistivity data pertaining to pregnant solution characteristics in the heap/formation. In one embodiment, the present invention may utilize one or more wire line deployed X-Ray Fluorescence (XRF) spectrometers capable of quantitatively measuring concentrations of desired metals in the heap/formation during leaching operations. In one embodiment, the present invention utilizes multiple passes of elemental capture spectroscopy logs acquired at regular time intervals to monitor metal concentrations during leaching operations. In one embodiment, the present invention provides one or more subsurface barriers capable of optimizing leaching operations.
Abstract:
A method and apparatus for obtaining neutron images of a rock formation are provided. The neutron images can be obtained from a tool in a logging-while-drilling system but which need not rotate to obtain neutron data from a plurality of azimuthal orientations.
Abstract:
Systems and methods for stabilizing the gain of a gamma-ray spectroscopy system are provided. In accordance with one embodiment, a method of stabilizing the gain of a gamma-ray spectroscopy system may include generating light corresponding to gamma-rays detected from a geological formation using a scintillator having a natural radioactivity, generating an electrical signal corresponding to the light, and stabilizing the gain of the electrical signal based on the natural radioactivity of the scintillator. The scintillator may contain, for example, naturally radioactive elements such as Lutetium or Lanthanum.
Abstract:
Systems and methods for neutron porosity well logging with high precision and reduced lithology effects are provided. In accordance with an embodiment, a downhole neutron porosity tool may include a neutron source, a neutron monitor, a neutron detector, and data processing circuitry. The neutron source may emit neutrons into a subterranean formation while the neutron monitor detects a count of neutrons proportional to the neutrons emitted. The neutron detector may detect a count of neutrons that scatters off the subterranean formation. The data processing circuitry may determine an environmentally corrected porosity of the subterranean formation based at least in part on the count rate of neutrons scattered off the subterranean formation normalized to the count rate of neutrons proportional to the neutrons emitted by the neutron source.
Abstract:
Systems, methods, and devices with improved electrode configuration for downhole nuclear radiation generators are provided. For example, one embodiment of a nuclear radiation generator capable of downhole operation may include a charged particle source, a target material, and an acceleration column between the charged particle source and the target material. The acceleration column may include several electrodes shaped such that substantially no electrode material from the electrodes is sputtered onto an insulator surface of the acceleration column during normal downhole operation.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 250 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 260 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.
Abstract:
The invention relates to methods and apparatus for determining a downhole parameter in an underbalanced drilling environment which include: selectively activating a first fluid flowing from the formation through a wellbore while under balanced drilled; detecting the activated first fluid, and determining a depth at which said fluid enters the wellbore.
Abstract:
A fluid density determination apparatus and method comprising an X-ray generator emitting a high energy radiation signal and a low energy radiation signal; a sample cell housing a sample of interest and at least one of the high energy and low energy radiation signals being directed through the sample cell; and a radiation detector measuring the output radiation from the sample cell. Data gathered at the radiation detector using the high and low energy signals are used to calculate the density of the fluid sample of interest.