Abstract:
A transmissive-type target includes a target layer, and a transmissive substrate configured to support the target layer. The transmissive substrate has a pair of surfaces facing each other and is formed of polycrystalline diamond. In the transmissive substrate, one of the pair of surfaces includes polycrystalline diamond having a first average crystal grain diameter which is smaller than a second average crystal grain diameter of polycrystalline diamond included on the other surface opposing thereto. The target layer is supported by any one of the pair of surfaces.
Abstract:
In one embodiment, an X-ray tube is provided. The X-ray tube comprises at least one thermionic cathode configured to generate an electron beam, a target assembly configured to generate X-rays when impinged with the electron beam emitted from the thermionic cathode, a high voltage supply unit for establishing an output voltage across the thermionic cathode and the target assembly for establishing an accelerating electric field between the thermionic cathode and the target assembly and a mesh grid disposed between the thermionic cathode and the target assembly, the mesh grid configured to operate at a voltage so as to lower the electric field applied at the surface of the thermionic cathode. Further, the voltage at the mesh grid is negatively biased with respect to the voltage at the thermionic cathode.
Abstract:
A plug for the connection of a high-voltage cable. The plug comprises a jacket configured to be inserted into a connection receptacle of a high-voltage electrical appliance in order to connect the cable to the appliance, wherein the jacket includes a recess created therein, and a sleeve positioned around the jacket to form an insulating interface between the jacket and the receptacle, with the sleeve being located in the recess of the jacket and configured to hold the sleeve on the jacket.
Abstract:
A method for monitoring a rotor speed of an X-ray tube anode drive includes acquiring axial flux pickup data from the rotor, using the axial flux pickup data to provide a flux spectrum, and estimating the rotor speed by analyzing the flux spectrum. The step of acquiring axial flux pickup data can include situating an axial leakage flux pickup coil so as to pick up a flux signal from an X-ray tube anode drive rotor while the rotor rotates. An analog flux signal can be converted to a digital flux signal and a fast Fourier transform can be used to transform the digital flux signal into a flux spectrum. The flux spectrum can be used to estimate a drive frequency and a slip frequency and the speed can be estimated by subtracting the slip frequency from the drive frequency and dividing by the number of pole pairs of the X-ray tube anode drive.
Abstract:
An x-ray tube 10 can have (a) an enclosure electrically-insulating a cathode 11 from an anode 12; (b) a coating-ring 18 on an inner-face of the enclosure, the coating-ring 18 encircling a longitudinal-axis 16 of the enclosure; and (c) an interruption-ring 19 located at the inner-face of the enclosure at a different location than the coating-ring 18. The interruption-ring 19 can encircle the longitudinal-axis 16 at a different location along the longitudinal-axis 16 with respect to the coating-ring 18. The interruption-ring 19 can encircle the longitudinal-axis 16 at a different radius from the longitudinal-axis 16 than the coating-ring 18. The coating-ring 18 and the interruption-ring 19 can reduce uneven electrical charge build-up on the inner-face of the enclosure, and can protect the triple-point.
Abstract:
In an X-ray radiation source, a lid part is fastened to a main part with screws, so that an X-ray tube is secured to a housing while being pressed against an inner surface of the wall part a by a first circuit board. The X-ray tube can be secured stably within the housing by thus being held between the first circuit board and the wall part. The X-ray radiation source uses the first circuit board incorporated in the housing itself for pressing the X-ray tube. This makes it unnecessary to provide new members for pressing the X-ray tube and can prevent the device structure from becoming complicated.
Abstract:
A plug for the connection of a high-voltage cable. The plug comprises a jacket configured to be inserted into a connection receptacle of a high-voltage electrical appliance in order to connect the cable to the appliance, wherein the jacket includes a recess created therein, and a sleeve positioned around the jacket to form an insulating interface between the jacket and the receptacle, with the sleeve being located in the recess of the jacket and configured to hold the sleeve on the jacket.
Abstract:
An field emitter array system (10) includes a housing (50). An emitter array (80) generates an electron beam and has multiple emitter elements (81) that are disposed within the housing (50). Each of the emitter elements has multiple activation connections (92).
Abstract:
An x-ray tube 10 can have (a) an enclosure electrically-insulating a cathode 11 from an anode 12; (b) a coating-ring 18 on an inner-face of the enclosure, the coating-ring 18 encircling a longitudinal-axis 16 of the enclosure; and (c) an interruption-ring 19 located at the inner-face of the enclosure at a different location than the coating-ring 18. The interruption-ring 19 can encircle the longitudinal-axis 16 at a different location along the longitudinal-axis 16 with respect to the coating-ring 18. The interruption-ring 19 can encircle the longitudinal-axis 16 at a different radius from the longitudinal-axis 16 than the coating-ring 18. The coating-ring 18 and the interruption-ring 19 can reduce uneven electrical charge build-up on the inner-face of the enclosure, and can protect the triple-point.
Abstract:
A cathode assembly, an X-ray source and a CT device are provided. The cathode assembly includes a ceramic plug having a first and second end portions. Four wiring terminals and a protruding positioning part are provided on the first end portion. An internal cavity is formed in the ceramic plug, and a cathode is provided therein. The cathode has a filament with a positive and negative electrode leads. A grid is provided on the second end portion and has a grid voltage signal line. The cathode has a cathode surface lead. The positive electrode lead, the negative electrode lead, the grid voltage signal line and the cathode surface lead are electrically connected to one of the wiring terminals, respectively. The ceramic socket has four wiring tubes which may be electrically connected with the four wiring terminals.