Abstract:
An X-ray generator is provided using a transmission type target having a long life span, where it is possible to change the point for generating X-rays on the surface of the target while maintaining the vacuum chamber in a high vacuum state. A portion of a vacuum chamber 1 that includes a target 2 is linked to a main body portion 1a of the chamber through a linking member 5 as a movable chamber portion 1b. A fixed anode 12 is provided between the target 2 and the electrode 10 at the final stage from among a group of electrodes 8, 9 and 10 for electrostatically accelerating and converging electrons from an electron source 7 and is fixed to the main body portion 1a of the chamber in order to prevent the form of the electrical field from changing when the movable chamber portion 1b is shifted.
Abstract:
A system for electron beam X-ray computer tomography, which requires no considerable axial extension of the electron emitter and substantially eliminates electron-optical beam guidance elements is provided by disposing an X-ray detector arc and the target around the examination cross-section within an irradiation plane, and radially introducing an electron beam generated in the electron beam generator into the magnetic flux region of one or more longitudinal coils from within or outside the coils and forcing the same onto a circular path by way of the magnetic field. By periodically changing the field strength, the radius of the circular path is increased, as a result of which the electron beam impinges on the target in a tangentially migrating focal spot. Radiography projections of the object located in the center of the system are recorded by the X-ray detector surrounding the target, the target and x-ray detector planes being with or without axial offset.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 250 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.
Abstract:
A conical anode X-ray source with a spot size approximately one tenth of the size of existing mammography devices. The source produces the same or higher radiance than the prior art. It also produces almost no high-energy Bremstrahlung. The electron beam is directed into a conical anode so that it strikes the reflecting surface at an angle which produces total internal reflection. The X-rays emitted via the reflection would ordinarily exit the small end of the conical anode in a diverging conical pattern—producing an undesirable “ring” configuration at the image plane. A homogenizing optic is therefore preferably added to the small end of the conical anode. The homogenizing optic is sized to reflect the X-rays emerging from the conical anode and thereby create a uniform “spot” source at the far end of the homogenizing optic.
Abstract:
According to one embodiment, a distance from an X-ray tube central axis to an outer side surface of a cathode electron gun in a direction perpendicular to the longitudinal direction of a filament coil is made less than a distance from the X-ray tube central axis to an outer side surface of the cathode electron gun in the longitudinal direction of the filament coil, and a distance from the X-ray tube central axis to an X-ray radiation window in the direction perpendicular to the longitudinal direction of the filament coil is made less than a distance from the X-ray tube central axis to an X-ray radiation window in the longitudinal direction of the filament coil.
Abstract:
An apparatus and method for the X-ray irradiation of materials is provided. This apparatus includes an irradiation chamber, a number of flat electromagnetic (X-ray) sources having a number of addressable cathode emitters, a support mechanism, a heat transfer system, a shielding system, and a process controller. A shielded portal within the shielding system allows access to an interior volume of the irradiation chamber. The electromagnetic sources are positioned on or embedded within interior surfaces of the irradiation chamber. These electromagnetic sources generate an electromagnetic flux, such as an X-ray flux, where this flux is used to irradiate the interior volume of the irradiation chamber and any materials placed therein. The operation of the electromagnetic sources and the number of addressable cathode emitters being controlled by the process controller. The materials placed within the interior of the chamber may be supported by a low attenuation support mechanism. This low attenuation support mechanism does not substantially reduce the X-ray flux intended to irradiate the materials placed within the interior volume of the irradiation chamber.
Abstract:
An improved x-ray generation system produces a converging or diverging radiation pattern particularly suited for substantially cylindrical or spherical treatment devices. In an embodiment, the system comprises a closed or concave outer wall about a closed or concave inner wall. An electron emitter is situated on the inside surface of the outer wall, while a target film is situated on the outside surface of the inner wall. An extraction voltage at the emitter extracts electrons which are accelerated toward the inner wall by an acceleration voltage. Alternately, electron emission may be by thermionic means. Collisions of electrons with the target film causes x-ray emission, a substantial portion of which is directed through the inner wall into the space defined within. In an embodiment, the location of the emitter and target film are reversed, establishing a reflective rather than transmissive mode for convergent patterns and a transmissive mode for divergent patterns.
Abstract:
There is disclosed a device including: an electron beam generation device 10 which accelerates a pulse electron beam 1 to transmit the beam through a predetermined rectilinear orbit 2; a laser generation device 20 which generates a pulse laser light 3; a laser light introduction device 30 which introduces the pulse laser light 3 onto the rectilinear orbit 2 so as to collide with the pulse electron beam 1; a metal target 42 which generates a particular X-ray 5 by collision with the pulse electron beam 1: and a target moving device 40 capable of moving the metal target between a collision position 2a on the rectilinear orbit and a retreat position out of the orbit. A collision surface of the metal target 42 is positioned spatially at the same position as that of the collision point 2a. At the retreat position of the metal target, the pulse electron beam 1 collides with the pulse laser light 3 to generate a monochromatic hard X-ray 4. At the collision position of the metal target 42, the pulse electron beam 1 collides with the metal target 42 to generate the particular X-ray 5 from the same light source position 2a.
Abstract:
A novel x-ray treatment system utilizes one or more large area flat panel sources of x-ray radiation directed into a target zone. A target substance within the target zone is irradiated with x-ray radiation from the one or more flat panel sources, reducing the biological effects of a contaminant presence therein. The flat panel source comprises an electron source, an electron accelerator, and an electron target medium. The electron source may emit electrons either via field emission or thermionic emission. The x-ray source may operate in transmissive, reflective, or combined transmissive/reflective mode. The use of large area flat panel x-ray sources in the inventive systems allows for decreased installation and operational costs as well as increased efficiency.
Abstract:
An x-ray emitting window is formed at a front end face, and a taper surface tilted with respect to the x-ray emitting direction is formed near the emitting window, whereby an object to be inspected can be prevented from abutting against the front end face even if the object is pivoted about an axis intersecting the emitting direction while the object is disposed closer to the x-ray emitting window. As a consequence, while the object is disposed closer to the x-ray emitting position, the orientation of the object can be changed. Therefore, when inspecting the internal structure of the object and the like by irradiating the object with x-rays and detecting the x-rays transmitted through the object, not only a magnified penetration image of the object with a high magnification rate is obtained, but also the internal structure of the object and the like can be verified in detail by changing the orientation of the object.