Abstract:
A lithography system is disclosed that provides an array of areas of imaging electromagnetic energy that are directed toward a recording medium. The reversible contrast-enhancement material is disposed between the recording medium and the array of areas of imaging electromagnetic energy.
Abstract:
A dichromatic lens includes a plurality of zones being arranged on a lens structure, each of the zones having a specified radius and varying height. The lens structure focuses propagating light applicable to any intensity distribution for a plurality of wavelengths.
Abstract:
A lithography system is disclosed that includes an array of focusing elements for directing focused illumination toward a recording medium, and a reversible contrast-enhancement material disposed between the recording medium and the array of focusing elements.
Abstract:
A system and method are disclosed for providing error correction in an imaging system. The system includes an error determination unit for determining an amount of error associated with a spot at (x,y) in a binary pattern to be imaged, a determination unit for determining the location of a nearest exposed spot at (xi, yi) for each spot at (x,y), and a dose modification unit for modifying an exposure dose at the nearest exposed spot at (xi, yi) for each spot at (x,y).
Abstract:
A maskless lithography system is disclosed that includes an array of focusing elements, each of which focuses an energy beam from an array of sources into an array of focal spots in order to create a permanent pattern on an adjacent substrate.
Abstract:
A photovoltaic cell is provided. The photovoltaic cell includes a concentrator optic structure separating the solar spectrum of light into a plurality of spectral bands. The concentrator optic structure focuses these spectral bands into a plurality of concentric tightly focused ring-shaped spots and a central round spot. A multitude of circular sub-cells are each approximately positioned at a ring-shaped spot associated with a respective spectral band produced by the concentrator optic structure. Each of the sub-cells stores the energy produced at the respective spectral band
Abstract:
A method for designing a diffractive optic includes identifying an initial performance metric for the diffractive optic, the diffractive optic including a substrate. A test cell is selected from an array of cells on the substrate. A height of the test cell is changed by a predetermined height unit. Images are computed at a plurality of discrete wavelengths or using a continuous spectrum using diffraction-based propagation through at least a portion of the array of cells. A wavelength metric is determined for each of the images. The wavelength metrics for each of the images is consolidated into a perturbed performance metric. The perturbed performance metric is compared to the initial performance metric and the method identifies whether the perturbed performance metric is an improvement over the initial performance metric.
Abstract:
An imaging system is provided. The imaging system includes a sample to be scanned by the imaging system. An absorbance modulation layer (AML) is positioned in close proximity to the sample and is physically separate from the sample. One or more sub-wavelength apertures are generated within the AML, whose size is determined by the material properties of the AML and the intensities of the illuminating wavelengths. A light source transmits an optical signal through the one or more sub-wavelength apertures generating optical near-fields that are collected for imaging.
Abstract:
A method is disclosed for creating a permanent pattern on a substrate. The method includes the steps of providing an array of photon sources, each of which provides a photon beam, providing an array of focusing elements, each of which focuses an associated photon beam from the array of photon sources onto a substrate, and creating a permanent pattern on a substrate using the array of focusing elements to respectively focus associated photon beams on the substrate.
Abstract:
A method to enhance resolution in optical lithography via absorbance-modulation involves exposing an opaque absorbance modulation layer (AML) to a first waveform having wavelength, 81, with the first exposure forming a first set of transparent regions in the opaque AML and forming a first pattern made of a set of exposed regions in a photoresist layer. Next, the AML is restored to its original opaque state. Next, the restored AML is re-exposed to the first waveform having wavelength, 81, with the exposure forming a second set of transparent regions in the opaque AML and forming a second pattern having a set of exposed regions in a photoresist layer. The first and second patterns in the photoresist layer form a final pattern with enhanced resolution and decreased spatial period than the first pattern. In another scenario, instead of exposing the AML to a first waveform, two waveforms are used (the second being complimentary to the first) to ensure that the transmitted image has sharper edges compared to the original image.