Abstract:
A method for predicting etch rate uniformity for qualifying health status of a processing chamber during substrate processing of substrates is provided. The method includes executing a recipe and receiving processing data from a first set of sensors. The method further includes analyzing the processing data utilizing a subsystem health check predictive model to determine calculated data, which includes at least one of etch rate data and uniformity data. The subsystem health check predictive model is constructed by correlating measurement data from a set of film substrates with processing data collected during analogous processing of a set of non-film substrates. The method yet also includes performing a comparison of the calculated data against a set of control limits as defined by the subsystem health check predictive model. The method yet further includes generating a warning if the calculated data is outside of the set of control limits.
Abstract:
A process-level troubleshooting architecture (PLTA) configured to facilitate substrate processing in a plasma processing system is provided. The architecture includes a process module controller. The architecture also includes a plurality of sensors, wherein each sensor of the plurality of sensors communicates with the process module controller to collect sensed data about one or more process parameters. The architecture further includes a process-module-level analysis server, wherein the process-module-level analysis server communicates directly with the plurality of sensors and the process module controller. The process-module-level analysis server is configured for receiving data, wherein the data include at least one of the sensed data from the plurality of sensors and process module and chamber data from the process module controller. The process-module-level analysis server is also configured for analyzing the data and sending interdiction data directly to the process module controller when a problem is identified during the substrate processing.
Abstract:
A method for optical interrogation of plasma during plasma processing in a plasma processing chamber is provided. The method includes providing an optical viewport. The method also includes providing a collimator arrangement. The collimator arrangement is configured with a plurality of collimators, wherein a first collimator of the plurality of collimators is separated by a connecting region from a second collimator in the plurality of collimators. The method further includes collecting optical signals, through the collimator arrangement, from the plasma within the plasma processing chamber while a substrate is being processed, resulting in highly collimated optical signals.
Abstract:
A process-level troubleshooting architecture (PLTA) configured to facilitate substrate processing in a plasma processing system is provided. The architecture includes a process module controller. The architecture also includes a plurality of sensors, wherein each sensor of the plurality of sensors communicates with the process module controller to collect sensed data about one or more process parameters. The architecture further includes a process-module-level analysis server, wherein the process-module-level analysis server communicates directly with the plurality of sensors and the process module controller. The process-module-level analysis server is configured for receiving data, wherein the data include at least one of the sensed data from the plurality of sensors and process module and chamber data from the process module controller. The process-module-level analysis server is also configured for analyzing the data and sending interdiction data directly to the process module controller when a problem is identified during the substrate processing.
Abstract:
A test system for facilitating determining whether a plasma processing system (which includes a plasma processing chamber) is ready for processing wafers. The test system may include a computer-readable medium storing at least a test program. The test program may include code for receiving electric parameter values derived from signals detected by at least one sensor when no plasma is present in the plasma processing chamber. The test program may also include code for generating electric model parameter values using the electric parameter values and a mathematical model. The test program may also include code for comparing the electric model parameter values with baseline model parameter value information. The test program may also include code for determining readiness of the plasma processing system based on the comparison. The test system may also include circuit hardware for performing one or more tasks associated with the test program.
Abstract:
A method for predicting etch rate uniformity for qualifying health status of a processing chamber during substrate processing of substrates is provided. The method includes executing a recipe and receiving processing data from a first set of sensors. The method further includes analyzing the processing data utilizing a subsystem health check predictive model to determine calculated data, which includes at least one of etch rate data and uniformity data. The subsystem health check predictive model is constructed by correlating measurement data from a set of film substrates with processing data collected during analogous processing of a set of non-film substrates. The method yet also includes performing a comparison of the calculated data against a set of control limits as defined by the subsystem health check predictive model. The method yet further includes generating a warning if the calculated data is outside of the set of control limits.
Abstract:
A test system for facilitating determining whether a plasma processing system (which includes a plasma processing chamber) is ready for processing wafers. The test system may include a computer-readable medium storing at least a test program. The test program may include code for receiving electric parameter values derived from signals detected by at least one sensor when no plasma is present in the plasma processing chamber. The test program may also include code for generating electric model parameter values using the electric parameter values and a mathematical model. The test program may also include code for comparing the electric model parameter values with baseline model parameter value information. The test program may also include code for determining readiness of the plasma processing system based on the comparison. The test system may also include circuit hardware for performing one or more tasks associated with the test program.
Abstract:
A method of determining a parameter of interest during fabrication of a patterned substrate includes illuminating at least a portion of the patterned substrate with a normal incident light beam, obtaining a measured net reflectance spectrum of the portion of the patterned substrate from a normal reflected light beam, calculating a modeled net reflectance spectrum of the portion of the patterned substrate, and determining a set of parameters that provides a close match between the measured net reflectance spectrum and the modeled net reflectance spectrum. The modeled net reflectance spectrum is calculated as a weighted incoherent sum of reflectances from n≧1 different regions constituting the portion of the patterned substrate, wherein the reflectance of each of the n different regions is a weighted coherent sum of reflected fields from k≧1 laterally-distinct areas constituting the region.
Abstract:
A method for detecting an in-situ fast transient event within a processing chamber during substrate processing is provided. The method includes a set of sensors comparing a data set to a set of criteria (in-situ fast transient events) to determine if the first data set includes a potential in-situ fast transient event. If the first data set includes the potential in-situ fast transient event, the method also includes saving an electrical signature that occurs in a time period during which the potential in-situ fast transient event occurs. The method further includes comparing the electrical signature against a set of stored arc signatures. If a match is determined, the method yet also includes classifying the electrical signature as a first in-situ fast transient event and determining a severity level for the first in-situ fast transient event based on a predefined set of threshold ranges.
Abstract:
A method for automatically identifying an optimal endpoint algorithm for qualifying a process endpoint during substrate processing within a plasma processing system is provided. The method includes receiving sensor data from a plurality of sensors during substrate processing of at least one substrate within the plasma processing system, wherein the sensor data includes a plurality of signal streams from a plurality of sensor channels. The method also includes identifying an endpoint domain, wherein the endpoint domain is an approximate period within which the process endpoint is expected to occur. The method further includes analyzing the sensor data to generate a set of potential endpoint signatures. The method yet also includes converting the set of potential endpoint signatures into a set of optimal endpoint algorithms. The method yet further includes importing one optimal endpoint algorithm of the set of optimal endpoint algorithms into production environment.