Abstract:
A process kit ring adaptor includes a rigid carrier. The rigid carrier includes an upper surface and a lower surface. The upper surface includes a first distal portion and a second distal portion to support a process kit ring. The lower surface includes a first region to interface with an end effector configured to support wafers and a solid planar central region to interface with a vacuum chuck.
Abstract:
Substrate temperature control apparatus and electronic device manufacturing systems provide pixelated light-based heating to a substrate in a process chamber. A substrate holder in the process chamber may include a baseplate. The baseplate has a top surface that may have a plurality of cavities and a plurality of grooves connected to the cavities. Optical fibers may be received in the grooves such that each cavity has a respective optical fiber terminating therein to transfer light thereto. Some or all of the cavities may have an epoxy optical diffuser disposed therein to diffuse light provided by the optical fiber. A ceramic plate upon which a substrate may be placed may be bonded to the baseplate. A thermal spreader plate may optionally be provided between the baseplate and the ceramic plate. Methods of controlling temperature across a substrate holder in an electronic device manufacturing system are also provided, as are other aspects.
Abstract:
Substrate temperature control apparatus including groove-routed optical fibers. Substrate temperature control apparatus includes upper and lower members including grooves in one or both, and a plurality of optical fibers routed in the grooves. In one embodiment, the optical fibers are adapted to provide light-based pixelated heating. In another embodiment, embedded optical temperature sensors are adapted to provide temperature measurement. Substrate temperature control systems, electronic device processing systems, and methods including groove-routed optical fiber temperature control and measurement are described, as are numerous other aspects.
Abstract:
A process kit enclosure system includes walls and a retention device structure. The retention device structure includes a retention device post and a retention device fin. The retention device fin in a first position is disposed above and secures a process kit ring supported in the interior volume of the process kit enclosure system. The retention device fin is rotated from the first position to be in a second position to be outside a boundary of the process kit ring. The retention device post is aligned with and inserts into a recess formed by a top cover of the process kit enclosure system responsive to the retention device post being in the first position. The retention device post is misaligned with and blocked from inserting into the recess formed by the top cover responsive to the retention device post of the retention device structure being in the second position.
Abstract:
A process kit enclosure system includes surfaces to enclose an interior volume, a first support structure including first fins, a second support structure including second fins, and a front interface to interface the process kit enclosure system with a load port of a wafer processing system. The first and second fins are sized and spaced to hold process kit ring carriers and process kit rings in the interior volume. Each of the process kit rings is secured to one of the process kit ring carriers. The process kit enclosure system enables first automated transfer of a first process kit ring carrier securing a first process kit ring from the process kit enclosure system into the wafer processing system and second automated transfer of a second process kit ring carrier securing a second process kit ring from the wafer processing system into the process kit enclosure system.
Abstract:
A process kit ring adaptor includes a rigid carrier. The rigid carrier includes an upper surface and a lower surface. The upper surface includes a first distal portion and a second distal portion to support a process kit ring. The lower surface includes a first region to interface with an end effector configured to support wafers and a solid planar central region to interface with a vacuum chuck.
Abstract:
Substrate temperature control apparatus and electronic device manufacturing systems provide pixelated light-based heating to a substrate in a process chamber. A substrate holder in the process chamber may include a baseplate. The baseplate has a top surface that may have a plurality of cavities and a plurality of grooves connected to the cavities. Optical fibers may be received in the grooves such that each cavity has a respective optical fiber terminating therein to transfer light thereto. Some or all of the cavities may have an epoxy optical diffuser disposed therein to diffuse light provided by the optical fiber. A ceramic plate upon which a substrate may be placed may be bonded to the baseplate. A thermal spreader plate may optionally be provided between the baseplate and the ceramic plate. Methods of controlling temperature across a substrate holder in an electronic device manufacturing system are also provided, as are other aspects.
Abstract:
Substrate temperature control apparatus including groove-routed optical fibers. Substrate temperature control apparatus includes upper and lower members including grooves in one or both, and a plurality of optical fibers routed in the grooves. In one embodiment, the optical fibers are adapted to provide light-based pixelated heating. In another embodiment, embedded optical temperature sensors are adapted to provide temperature measurement. Substrate temperature control systems, electronic device processing systems, and methods including groove-routed optical fiber temperature control and measurement are described, as are numerous other aspects.
Abstract:
Apparatus for providing electrical currents and substrate supports utilizing the same are provided. In some embodiments, a feedthrough structure may include a body having a wall defining one or more openings disposed through the body from a first end to a second end; one or more first conductors and one or more second conductors each disposed in the wall from the first end to the second end; and a plurality of conductive mesh disposed in the wall, at least one conductive mesh surrounding a first region of the wall including the one or more first conductors and at least one conductive mesh surrounding a second region of the wall including the one or more second conductors, wherein the plurality of conductive mesh substantially electrically insulates the first and second regions from respective first and second external electromagnetic fields respectively disposed outside the first and second regions.
Abstract:
Methods and apparatus of substrate supports having temperature profile control are provided herein. In some embodiments, a substrate support includes: a plate having a substrate receiving surface and an opposite bottom surface; and a shaft having a first end comprising a shaft heater and a second end, wherein the first end is coupled to the bottom surface. Methods of making a substrate support having temperature profile control are also provided.