Abstract:
A semiconductor package structure and a fabrication method thereof are provided. The fabrication method comprises: providing a substrate strip, the substrate strip comprising a plurality of substrate units; disposing a plurality of chips on the plurality of substrate units; disposing a packaging encapsulant on the substrate strip to encapsulate the chips; forming a warp-resistant layer on a top surface of the packaging encapsulant; and dividing the substrate strip to separate the plurality of substrate units to further fabricate a plurality of semiconductor package structures, wherein the warp-resistant layer is formed of a selected material with a selected thickness to make a variation of warpage of the semiconductor package structure at a temperature between 25° C. and 260° C. to be smaller than 560 μm.
Abstract:
An optical module includes: a carrier; an optical element disposed on the upper side of the carrier; and a housing disposed on the upper side of the carrier, the housing defining an aperture exposing at least a portion of the optical element, an outer sidewall of the housing including at least one singulation portion disposed on the upper side of the carrier, wherein the singulation portion of the housing is a first portion of the housing, and wherein the housing further includes a second portion and a surface of the singulation portion of the housing is rougher than a surface of the second portion of the housing.
Abstract:
A semiconductor substrate includes an insulating layer and a conductive circuit layer embedded at a surface of the insulating layer. The conductive circuit layer includes a first portion and a second portion. The first portion includes a bonding pad and one portion of a conductive trace, and the second portion includes another portion of the conductive trace. An upper surface of the first portion is not coplanar with an upper surface of the second portion. A semiconductor packaging structure includes the semiconductor substrate.
Abstract:
A semiconductor substrate includes an insulating layer, a first conductive patterned layer disposed adjacent to a first surface of the insulating layer, and conductive bumps disposed on the first conductive patterned layer. Each conductive bump has a first dimension along a first direction and a second dimension along a second direction perpendicular to the first direction, and the first dimension is greater than the second dimension. A semiconductor package structure includes the semiconductor substrate, at least one die electrically connected to the conductive bumps, and a molding compound encapsulating the conductive bumps.
Abstract:
A package carrier includes: (a) a dielectric layer defining a plurality of openings; (b) a patterned electrically conductive layer, embedded in the dielectric layer and disposed adjacent to a first surface of the dielectric layer; (c) a plurality of electrically conductive posts, disposed in respective ones of the openings, wherein the openings extend between a second surface of the dielectric layer to the patterned electrically conductive layer, the electrically conductive posts are connected to the patterned electrically conductive layer, and an end of each of the electrically conductive posts has a curved profile and is faced away from the patterned electrically conductive layer; and (d) a patterned solder resist layer, disposed adjacent to the first surface of the dielectric layer and exposing portions of the patterned electrically conductive layer corresponding to contact pads. A semiconductor package includes the package carrier, a chip, and an encapsulant covering the chip and the package carrier.
Abstract:
A multilayer substrate includes a first outer conductive patterned layer, a first insulating layer exposing a portion of the first outer conductive patterned layer to define a first set of pads, a second outer conductive patterned layer, and a second insulating layer exposing a portion of the second outer conductive patterned layer to define a second set of pads. The multilayer substrate further includes inner layers each with an inner conductive patterned layer, multiple inner conductive posts formed adjacent to the inner conductive patterned layer, and an inner dielectric layer, where the inner conductive patterned layer and the inner conductive posts are embedded in the inner dielectric layer, and a top surface of each of the inner conductive posts is exposed from the inner dielectric layer.
Abstract:
A multilayer substrate includes a first outer conductive patterned layer, a first insulating layer exposing a portion of the first outer conductive patterned layer to define a first set of pads, a second outer conductive patterned layer, and a second insulating layer exposing a portion of the second outer conductive patterned layer to define a second set of pads. The multilayer substrate further includes inner layers each with an inner conductive patterned layer, multiple inner conductive posts formed adjacent to the inner conductive patterned layer, and an inner dielectric layer, where the inner conductive patterned layer and the inner conductive posts are embedded in the inner dielectric layer, and a top surface of each of the inner conductive posts is exposed from the inner dielectric layer.
Abstract:
The substrate includes a first dielectric layer, a first circuit pattern, a plurality of pillars and a second circuit pattern. The first dielectric layer has opposing first and second dielectric surfaces. The first circuit pattern is embedded in the first dielectric layer and defines a plurality of curved trace surfaces. Each of the pillars has an exterior surface adapted for making external electrical connection and a curved base surface abutting a corresponding one of the trace surfaces. The second circuit pattern is on the second dielectric surface of the first dielectric layer and electrically connected to the first circuit pattern.
Abstract:
A substrate structure and a semiconductor package structure including the same are provided. The substrate structure includes a circuit layer and a dielectric structure. The circuit layer has a bottom surface and a top surface opposite to the bottom surface. The dielectric structure around the circuit layer. The dielectric structure covers a first part of the bottom surface of the circuit layer, and exposes a second part of the bottom surface and the top surface of the circuit layer. The dielectric structure exposes the top surface of the circuit layer. In addition, a method of manufacturing a semiconductor package structure is also provided.
Abstract:
A micro-electromechanical systems (MEMS) package structure includes: (1) a circuit layer; (2) a MEMS die with an active surface, wherein the active surface faces the circuit layer; (3) a conductive pillar adjacent to the MEMS die; and (4) a package body encapsulating the MEMS die and the conductive pillar, and exposing a top surface of the conductive pillar.