Abstract:
The invention relates to a process for preparing butadiene from n-butenes having a start-up phase and an operating phase, wherein the process in the operating phase comprises the steps:A) provision of a feed gas stream a1 comprising n-butenes; B) introduction of the feed gas stream a1 comprising n-butenes, of an oxygen-comprising gas stream a2 and of an oxygen-comprising recycle gas stream d2 into at least one oxidative dehydrogenation zone and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas stream b comprising butadiene, unreacted n-butenes, water vapor, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases; C) cooling and compression of the product gas stream b and condensation of at least part of the high-boiling secondary components, giving at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; D) introduction of the gas stream c2 into an absorption zone and separation of incondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d from the gas stream c2 by absorption of the C4-hydrocarbons comprising butadiene and n-butenes in an absorption medium, giving an absorption medium stream loaded with C4-hydrocarbons and the gas stream d, and recirculation, optionally after separating off a purge gas stream p, of the gas stream d as recycle gas stream d2 to the oxidative dehydrogenation zone; and the start-up phase comprises the steps: i) introduction of the oxygen-comprising gas stream and an inert gas stream into the dehydrogenation zone in such a ratio that the oxygen content of the recycle gas stream d2 corresponds to from 30 to 80% of the oxygen content of the recycle gas stream d2 in the operating phase; ii) setting of the recycle gas stream d2 to at least 70% of the volume flow of the recycle gas in the operating phase; iii) optional introduction, at an initial oxygen content of the recycle gas stream d2 of from 30 to 80% of the oxygen content of the recycle gas stream d2 in the operating phase, of a steam stream a3 into the dehydrogenation zone; iv) introduction, at an initial oxygen content of the recycle gas stream d2 of from 30 to 80% of the oxygen content of the recycle gas stream d2 in the operating phase, of an oxygen-comprising gas stream a2′ and a butene-comprising feed gas stream a1′ having a smaller volume flow than in the operating phase in a ratio k=a2′/a1′ and raising of the volume flow of the gas streams a1′ and a2′ until the volume flows of the gas streams a1 and a2 in the operating phase are obtained, with the recycle gas stream d2 being at least 70% and not more than 120% of the volume flow in the operating phase.
Abstract:
The invention relates to a process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising n-butenes; B) feeding the input gas stream a comprising n-butenes and an oxygenous gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, water vapor, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b by contacting it with a coolant and condensing at least a portion of the high-boiling secondary components; Cb) compressing the remaining product gas stream b in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases; Da) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases, as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and Db) subsequently desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1, which comprises additionally feeding in a methane-comprising gas stream at at least one point in the process section comprising steps B), Ca), Cb) and Da) in such amounts that the formation of an explosive gas mixture in step Da) is avoided.
Abstract:
An epoxidation catalyst comprising silver, cesium, rhenium and tungsten deposited on an alumina support, wherein the catalyst comprises 20 to 50 wt.-% of silver, relative to the weight of the catalyst, an amount of cesium Ccs of at least 7.5 mmol per kg of catalyst, and an amount of rhenium CR6 and an amount of tungsten Cw so as to meet the following requirements: CRe≥6.7 mmol per kg of catalyst; and CRe+(2χcw)≥13.2 mmol per kg of catalyst. The epoxidation catalyst allows for a more efficient conversion of ethylene oxide by gas-phase oxidation of ethylene, particularly displaying high selectivity and high activity. The invention also relates to a process for preparing an epoxidation catalyst as defined in above, comprising i) impregnating an alumina support with a silver impregnation solution; and ii) subjecting the impregnated refractory support to a calcination process; wherein steps i) and ii) are optionally repeated, and at least one silver impregnation solution comprises rhenium, tungsten and cesium. The invention moreover relates to a process for producing ethylene oxide by gas-phase oxidation of ethylene, comprising reacting ethylene and oxygen in the presence of an epoxidation catalyst according to any one of the preceding claims.
Abstract:
A tableted catalyst support, characterized by an alpha-alumina content of at least 85 wt.-%, a pore volume of at least 0.40 mL/g, as determined by mercury porosimetry, and a BET surface area of 0.5 to 5.0 m2/g. The tableted catalyst support is an alpha-alumina catalyst support obtained with high geometrical precision and displaying a high overall pore volume, thus allowing for impregnation with a high amount of silver, while exhibiting a surface area sufficiently large so as to provide optimal dispersion of catalytically active species, in particular metal species. The invention further provides a process for producing a tableted alpha-alumina catalyst support, which comprises i) forming a free-flowing feed mixture comprising, based on inorganic solids content, at least 50 wt.-% of a transition alumina; ii) tableting the free-flowing feed mixture to obtain a compacted body; and iii) heat treating the compacted body at a temperature of at least 1100° C., preferably at least 1300° C., more preferably at least 1400° C., in particular at least 1450° C., to obtain the tableted alpha-alumina catalyst support. The invention moreover relates to a compacted body obtained by tableting a free-flowing feed mixture which comprises, based on inorganic solids content, at least 50 wt.-% of a transition alumina having a loose bulk density of at most 600 g/L, a pore volume of at least 0.6 mL/g, as determined, and a median pore diameter of at least 15 nm. The invention moreover relates to a shaped catalyst body for producing ethylene oxide by gas-phase oxidation of ethylene, comprising at least 15 wt.-% of silver, relative to the total weight of the catalyst, deposited on the tableted alpha-alumina catalyst support. The invention moreover relates to a process for producing ethylene oxide by gas-phase oxidation of ethylene, comprising reacting ethylene and oxygen in the presence of the shaped catalyst body.
Abstract:
A shaped catalyst body for producing ethylene oxide by gas-phase oxidation of ethylene, comprising silver deposited on a porous refractory support, the shaped catalyst body having a first face side surface, a second face side surface and a circumferential surface, characterized by a content of at least 20 wt.-% of silver, relative to the total weight of the shaped catalyst body; a multilobe structure; a plurality of passageways extending from the first face side surface to the second face side surface, outer passageways being arranged around a central passageway with one outer passageway being assigned to each lobe, wherein neighboring outer passageways are arranged essentially equidistantly to each other and the outer passageways are arranged essentially equidistantly to the central passageway; a minimum wall thickness A between two neighboring passageways in the range of 0.6 to 1.3 mm; a minimum wall thickness B between each outer passageway and the circumferential surface in the range of 1.1 to 1.8 mm; and a BET surface area in the range of 1.6 to 3.0 m2/g. The shaped catalyst bodies allow for a favorable balance between mechanical stability, pressure drop and selectivity. The invention also relates to a process for producing ethylene oxide by gas-phase oxidation of ethylene, comprising reacting ethylene and oxygen in the presence of a shaped catalyst body as defined above. The invention further relates to a process for preparing a shaped catalyst body as above, comprising i) impregnating a refractory support having a BET surface area in the range of 1.4 to 2.5 m2/g with a silver impregnation solution; and ii) subjecting the impregnated refractory support to a calcination process; wherein steps i) and ii) are optionally repeated.
Abstract:
The present invention provides a catalyst effective in the oxidative conversion of ethylene to ethylene oxide, comprising an alumina support and 20 to 45%by weight of the catalyst, of silver applied to the support, the catalyst meeting the following limitations (i) to (v): (i) an amount of cesium c(Cs) in mmol per Kg of catalyst of at least 2; (ii) an amount of rhenium c(Re) in mmol per Kg of catalyst of at least 3.0; (iii) an amount of tungsten c(W) in mmol per Kg of catalyst of at least 1.6; (iv) a silicon to alkaline earth metal molar ratio x of not higher than 1.80; (v) c(Cs)−c(Re)−c(W)≤4·x−0.5.
Abstract:
A method for preparing a silver impregnation solution comprises (a) charging a neutralization reactor R1 with an aqueous organic amine; (b) adding oxalic acid powder through a first feeding conduit to the neutralization reactor R1 to obtain an aqueous oxalic acid-organic amine solution; (c) directing the aqueous oxalic acid-organic amine solution from the neutralization reactor to a complexation reactor R2; (d) adding particulate silver oxide through a second feeding conduit to the complexation reactor R2 to obtain a silver impregnation solution; and, optionally, (e) subjecting the silver impregnation solution to filtration. The silver impregnation solution is used for producing a catalyst effective in the oxidative conversion of ethylene to ethylene oxide. The method allows for the preparation of a silver impregnation solution in an efficient and occupationally and environmentally safe way. Security hazards which can occur when oxalic acid and silver oxide are added to an aqueous amine solution using the same powder feeding equipment or the same reactor are avoided.
Abstract:
The invention relates to a process for preparing butadiene from n-butenes in n reactors R1 to Rn operated in parallel, wherein the process in the production phase of a reactor Rm in the n reactors comprises the steps: A) provision of a feed gas stream a1m comprising n-butenes; B) feeding of the feed gas stream a1m comprising n-butenes, an oxygen-comprising gas stream a2m and a substream d2m of an oxygen-comprising total recycle gas stream d2 into the oxidative dehydrogenation zone of the reactor and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas substream bm comprising butadiene; C) combination of the product gas substream bm with further product gas substreams to form a total product gas stream b and cooling and compression of the total product gas stream b and condensation of at least part of the high-boiling secondary components, giving at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene; D) feeding of the gas stream c2 into an absorption zone and separation of incondensable and low-boiling gas constituents as gas stream d from the gas stream c2 by absorption of the C4-hydrocarbons in an absorption medium, giving an absorption medium stream d1 loaded with C4-hydrocarbons and a recycle gas stream d2, and recirculation of a substream d2m of the total recycle gas stream d2 into the reactor Rm, and during the regeneration phase of the reactor Rm further reactors are in the production phase and the regeneration phase of the reactor Rm comprises the steps in the order i) to v): i) reduction of the feed gas stream a1m comprising n-butenes and of the oxygen-comprising gas stream a2m and the feeding of an inert gas stream a4m into the reactor Rm; ii) further reduction of the feed gas stream a1m comprising n-butenes down to 0, reduction of the recycle gas substream d2m and increase of the inert gas stream a4m until the oxygen content in the reactor Rm is from 2 to 3% by volume; iii) regeneration of the catalyst by burning off carbon-comprising deposits at an oxygen content of from 2 to 3% by volume; iv) reduction of the inert gas stream a4m and increase of the recycle gas substream d2m until the oxygen content in the reactor Rm is from 4 to 10% by volume; v) reoxidation of the catalyst at an oxygen content of from 4 to 10% by volume.
Abstract:
The present invention relates to a catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride (PA), comprising a plurality of catalyst zones arranged in succession in the reaction tube, which has been produced using antimony trioxide consisting predominantly of the senarmontite modification of which all primary crystallites have a size of less than 200 nm. The present invention further relates to a process for gas phase oxidation, in which a gas stream comprising at least one hydrocarbon and molecular oxygen is passed through a catalyst system which comprises a plurality of catalyst zones arranged in succession in the reaction tube and which has been produced using an antimony trioxide consisting predominantly of the senarmontite modification with a median primary crystallite size of less than 200 nm.
Abstract:
The invention relates to a process for the oxidative dehydrogenation of n-butenes to butadiene, which comprises two or more production steps (i) and at least one regeneration step (ii) and in which (i) a starting gas mixture comprising n-butenes is mixed with an oxygen-comprising gas in a production step and the mixed gas is brought into contact with a multimetal oxide catalyst which comprises at least molybdenum and a further metal and is arranged in a fixed catalyst bed at a temperature of from 220 to 490° C. in a fixed-bed reactor, with a product gas mixture comprising at least butadiene, oxygen and water vapor being obtained at the outlet of the fixed-bed reactor, and (ii) the multimetal oxide catalyst is regenerated in a regeneration step by passing an oxygen-comprising regeneration gas mixture over the fixed catalyst bed at a temperature of from 200 to 450° C. and burning off the carbon deposited on the catalyst, with a regeneration step (ii) being carried out between two production steps (i), wherein the oxygen content in the product gas mixture at the outlet of the fixed-bed reactor is at least 5% by volume and the duration of a production step (i) is not more than 1000 hours.