Abstract:
An electric driver device provides a partial redundancy system that is at least partially redundant, or a full redundancy system. The electric driver device has a plurality of circuit systems. The electric driver device includes, in at least a part of the electric circuit, a common circuit extending over at least two of a plurality of circuit systems. The common circuit includes a power supply and/or a connection line that complements signals. At least one of the power supply circuit, an interface circuit, a power supply cutoff circuit, and a connector is not separated and independent from each other for each redundant circuit system.
Abstract:
An electronic element surface-mounted on a substrate has a leg part that protrudes from a back surface of the electronic element toward a heat sink along a peripheral portion of a back electrode. As such, if the substrate warps, the protruding leg part abuts a heat reception surface of the heat sink, thereby preserving an insulation gap between the back electrode and the heat sink. As a result, short-circuiting is prevented.
Abstract:
In a control unit, a control part is operated by electric power from an ignition power supply, and controls operations of relays and inverters. A first end of a boosting part is electrically connected between at least one relay and a corresponding inverter. A second end of the boosting part is electrically connected to the control part. The boosting part boosts a voltage at the first end, and outputs the voltage boosted from the second end. An abnormality detecting portion detects an abnormality of the boosting part. When the abnormality detecting portion detects an abnormality of the boosting part, the control part controls the at least one relay to which the first end of the boosting part is connected to shut off a flow of electric power from a main power supply to the boosting part and to the inverter corresponding to the at least one relay.
Abstract:
An electronic device includes a heat sink, where heat dissipating gel is interposed between the heat sink and a side of an electronic component, which is mounted on a substrate, opposite from the substrate. The electronic component includes an electrical conductor electrically connected to a chip, and an insulator portion that molds the chip with the electrical conductor. The heat sink includes a non-abutting surface that faces the electrical conductor of the electronic component, the heat dissipating gel interposed between the non-abutting surface and the electrical conductor, and an abutting surface that is positioned closer toward the substrate than the non-abutting surface is and abuttable with the insulator portion. Accordingly, when the abutting surface of the heat sink abuts the insulator portion of the electronic component, the non-abutting surface of the heat sink is prevented from abutting the electrical conductor of the electronic component.
Abstract:
A heat radiation structure for an electric device includes: at least one multi-layer substrate including a plurality of base parts made of insulation material and a conductor pattern, which are stacked in a multi-layer structure so that the conductor pattern is electrically coupled with an interlayer connection portion in the base parts; the electric device having at least one of a first electric element built in the at least one multi-layer substrate and a second electric element, which is not built in the multi-layer substrate; and a low heat resistance element opposed to the electric device. The low heat resistance element has a heat resistance lower than the insulation material.
Abstract:
An electronic unit includes a heat sink, a substrate, a heating component, a temperature sensor, a first interconnection, and a second interconnection. The heat sink includes a strut. The substrate is fixed to the strut of the heat sink. The heating component is mounted on the substrate to generate heat upon energization of the heating component. The temperature sensor is mounted on the substrate to detect temperature. The first interconnection is provided in a high-temperature region in which the heating component is mounted on the substrate, and is connected to the strut of the heat sink. The second interconnection is provided in a detection region in which the temperature sensor is mounted on the substrate, and is provided separately from the first interconnection. The second interconnection is connected to the strut of the heat sink and the temperature sensor.
Abstract:
An electronic device includes a heat sink, where heat dissipating gel is interposed between the heat sink and a side of an electronic component, which is mounted on a substrate, opposite from the substrate. The electronic component includes an electrical conductor electrically connected to a chip, and an insulator portion that molds the chip with the electrical conductor. The heat sink includes a non-abutting surface that faces the electrical conductor of the electronic component, the heat dissipating gel interposed between the non-abutting surface and the electrical conductor, and an abutting surface that is positioned closer toward the substrate than the non-abutting surface is and abuttable with the insulator portion. Accordingly, when the abutting surface of the heat sink abuts the insulator portion of the electronic component, the non-abutting surface of the heat sink is prevented from abutting the electrical conductor of the electronic component.
Abstract:
A semiconductor package includes a chip, a sealing body covering the chip, and a plurality of external connection terminals connected to the chip. The external connection terminals expose from a surface of the sealing body and are arranged in a grid on the surface of the sealing body. In the grid on the surface of the sealing body, each external connection terminal is adjacent to an area vacant of an other external connection terminal in at least one direction of eight directions from each external connection terminal, the eight directions including first linear directions along a row of the grid, second linear directions along a row of the grid perpendicular to the first linear directions, and four diagonal directions defined between the first linear directions and the second linear directions.
Abstract:
Synthesized signal generation circuits are provided to correspond to a U-coil, a V-coil, a W-coil, respectively, and generate synthesized signals by synthesizing a first command signal and a second command signal generated by a command signal generation circuit. CPU output terminals output the synthesized signals. Signal wires are provided with one ends being connected electrically to the CPU output terminals, respectively, and other ends being connected electrically to IC input terminals of a driver IC, respectively. Gate signal generation circuits separate the synthesized signals applied to the IC input terminals to generate first gate signals as gate signals for high-side FETs and second gate signals as gate signals for low-side FETs.
Abstract:
An in-vehicle power supply system includes a DC power source, a steering power converter, a steering drive control unit, a plurality of voltage-reducing devices, and a voltage-reducing control unit. The steering power converter converts electric power supplied from the DC power source, and provides the electric power converted to a steering assist motor. The steering drive control unit is supplied with electric power from the DC power source, and controls the steering power converter. The voltage-reducing devices are coupled in parallel to each other between the DC power source and the steering power converter. Each of the voltage-reducing devices reduces a power source voltage of the DC power source and generates a reduced voltage when being operated. The voltage-reducing control unit determines operation state or non-operation state of each of the voltage-reducing devices such that at least one of the voltage-reducing devices is in operation at a time.