Abstract:
An electronic unit includes a heat sink, a substrate, a heating component, a temperature sensor, a first interconnection, and a second interconnection. The heat sink includes a strut. The substrate is fixed to the strut of the heat sink. The heating component is mounted on the substrate to generate heat upon energization of the heating component. The temperature sensor is mounted on the substrate to detect temperature. The first interconnection is provided in a high-temperature region in which the heating component is mounted on the substrate, and is connected to the strut of the heat sink. The second interconnection is provided in a detection region in which the temperature sensor is mounted on the substrate, and is provided separately from the first interconnection. The second interconnection is connected to the strut of the heat sink and the temperature sensor.
Abstract:
An electronic device includes: a resin substrate that includes insulation resin on which wiring made of conductive material is provided; a heat-generation element that is a circuit element mounted on a first surface of the resin substrate, and is operated to generate heat; and a sealing resin that is provided on the first surface, and seals the heat-generation element. An opposite surface of the sealing resin opposite to a surface of the sealing resin in contact with the first surface is thermally connected to a heat radiation member and mounted on the heat radiation member. Each of the resin substrate and the sealing resin has a bend shape convex toward the opposite surface when each of surrounding temperatures is a normal temperature and has a linear expansion coefficient for maintaining a bend shape convex toward the opposite surface when each of the surrounding temperatures is a high temperature.
Abstract:
A substrate structure is presented that can include a porous polyimide material and electrodes formed in the porous polyimide material. In some examples, a method of forming a substrate can include depositing a barrier layer on a substrate; depositing a resist over the barrier layer; patterning and etching the resist; forming electrodes; removing the resist; depositing a porous polyimide aerogel; depositing a dielectric layer over the aerogel material; polishing a top side of the interposer to expose the electrodes; and removing the substrate from the bottom side of the interposer.
Abstract:
A circuit board includes a base layer, a circuit layer disposed on the base layer, where an air gap is defined in the circuit layer, a heat blocking part disposed in the air gap, and an electronic element disposed on the circuit layer. The heat blocking part has a thermal conductivity lower than a thermal conductivity of the circuit layer.
Abstract:
A substrate structure is presented that can include a porous polyimide material and electrodes formed in the porous polyimide material. In some examples, a method of forming a substrate can include depositing a barrier layer on a substrate; depositing a resist over the barrier layer; patterning and etching the resist; forming electrodes; removing the resist; depositing a porous polyimide aerogel; depositing a dielectric layer over the aerogel material; polishing a top side of the interposer to expose the electrodes; and removing the substrate from the bottom side of the interposer.
Abstract:
A formed graphite sheet is shaped and sized as a protective shield positioned over an electronic component coupled to a PCB. The formed graphite sheet is used to protect a body of the electronic component from heat applied during the assembly of the electronic component to the PCB, such as the heating steps used in SMT and through-hole technology.
Abstract:
A board includes a separating zone in an area closer to the edge than to the center of the board, the separating zone including one elongated through hole. A first group of electronic components that is a source of heat or electric noise is placed in a first area on the center side with respect to the separating zone of the board. On the other hand, a second group of electronic components from which influence of heat or electric noise from other components needs to be eliminated to a maximum extent is placed in a second area on the edge side with respect to the separating zone of the board.
Abstract:
A circuit board comprises one or more first electrical conductors (102-107) in a first portion of the thickness of the circuit board, one or more second electrical conductors (108, 109) in a second portion of the circuit board, at least one via-conductor (112) providing a galvanic current path between the first and second electrical conductors, a hole extending through the first and second portions of the circuit board, and an electrically conductive sleeve (114) lining the hole and having galvanic contacts with the second electrical conductors. The thermal resistance from the electrically conductive sleeve to the first electrical conductors is greater than the thermal resistance from the electrically conductive sleeve to the second electrical conductors so as to obtain a reliable solder joint between a part of the electrically conductive sleeve belonging to the first portion of the circuit board and an electrical conductor pin (119) located in the hole.
Abstract:
A substrate for a light-emitting diode comprising a metal base with a thickness of a predetermined value or more is constituted so that the thickness of a top conductor for an electrical connection with a light-emitting diode (LED) in a predetermined range falls within a predetermined range and the thickness of an insulation layer which electrically insulates the metal base and the top conductor and the thickness of the top conductor meet a predetermined relation. Thereby, a substrate for a light-emitting diode which can show a high heat dissipation capacity by achieving a low thermal resistance as the total thermal resistance of the whole substrate without reducing insulation reliability and high-humidity reliability of the substrate is provided.
Abstract:
A substrate for a light-emitting diode comprising a metal base with a thickness of a predetermined value or more is constituted so that the thickness of a top conductor for an electrical connection with a light-emitting diode (LED) in a predetermined range falls within a predetermined range and the thickness of an insulation layer which electrically insulates the metal base and the top conductor and the thickness of the top conductor meet a predetermined relation. Thereby, a substrate for a light-emitting diode which can show a high heat dissipation capacity by achieving a low thermal resistance as the total thermal resistance of the whole substrate without reducing an insulation reliability and high-humidity reliability of the substrate is provided.