Abstract:
A magnetic device includes a magnetic core assembly, a primary winding, a first secondary winding, at least one second secondary winding and an auxiliary winding. The magnetic core assembly includes a first magnetic leg, a second magnetic leg and a third magnetic leg. The primary winding is wound around the second magnetic leg. The at least one secondary winding is wound around the second magnetic leg or the third magnetic leg. The auxiliary winding is electrically connected with an auxiliary inductor and wound around at least one magnetic leg. The primary winding is electrically connected with a first switch circuit, and the at least one secondary winding is electrically connected with a second switch circuit, wherein when switches of the first switch circuit turn off and switches of the second switch circuit turn on, an superposed AC voltage coupled by the auxiliary winding is applied on the auxiliary inductor.
Abstract:
The present disclosure provides a power conversion circuit including positive and negative input terminals, a clamping branch circuit, a first primary switch, a transformer, a rectifier circuit, a resonant inductor, a resonant capacitor, and positive and negative output terminals. The clamping branch circuit includes a clamping capacitor and a second primary switch serially connected between the first and second terminals thereof. The first terminal is coupled to the positive input terminal. The first primary switch is connected between the second terminal and the negative input terminal. The primary winding of the transformer is connected to the clamping branch circuit in parallel. The rectifier circuit includes first and second bridge arms connected in parallel. Connection terminals in the first and second bridge arms are coupled to two terminals of the secondary winding of the transformer correspondingly. The first and second bridge arms are coupled between the positive and negative output terminals.
Abstract:
A magnetic device includes a magnetic core assembly and a winding assembly. The magnetic core assembly includes a first outer magnetic leg, a second outer magnetic leg, a first inner magnetic leg group and a second inner magnetic leg group. A first channel is formed between the first inner magnetic leg group and the first outer magnetic leg. A second channel is formed between the second inner magnetic leg group and the first inner magnetic leg group. A third channel is formed between the second inner magnetic leg group and the second outer magnetic leg. The winding assembly includes four coupled windings. The first terminals of the four coupled windings are located near a first lateral side of the magnetic core assembly. The second terminals of the four coupled windings are located near a second lateral side of the magnetic core assembly.
Abstract:
A power converter includes N power conversion units. Each power conversion unit includes a main switching circuit, a transformer, a synchronous rectifier circuit, an input signal terminal and a signal processor. A primary winding of the transformer is connected with the main switching circuit. The synchronous rectifier circuit is connected with a secondary winding of the transformer. The input signal terminal receives a first PWM control signal. The signal processor generates first and second PWM driving signals to drive the main switching circuit according to the first PWM control signal, and a phase difference between the first and second PWM driving signals is (180±θ) degree. The signal processor generates third and fourth PWM driving signals to drive the synchronous rectifier circuit according to the first PWM control signal, and a phase difference between the third and fourth PWM driving signals is (180±θ) degree.
Abstract:
A power converter includes a power module, a feedback module, and a control module. The power module is used for converting an input voltage into an output voltage. The feedback module is electrically connected with the power module for generating a feedback voltage according to the output voltage. The control module is electrically connected with the feedback module and the power module for comparing a reference duty cycle value with a duty cycle, generating a variable reference voltage according to the comparison between the reference duty cycle value and the duty cycle, comparing the variable reference voltage with the feedback voltage, and adjusting the duty cycle according to the comparison between the variable reference voltage and the feedback voltage.
Abstract:
The present disclosure provides a power converter including a first capacitor, a second capacitor, and a power module. The first capacitor and the second capacitor are connected in series. The power module is electrically connected to the first capacitor and the second capacitor and includes a circuit board, an absorption capacitor, a primary switch circuit, a magnetic component, and a secondary circuit. The absorption capacitor, the primary switch circuit, the magnetic component and the secondary circuit are disposed on the circuit board. A primary winding and a secondary winding of the magnetic component are electrically connected to the primary switch circuit and the secondary circuit respectively.
Abstract:
A magnetic device includes a magnetic core assembly, a primary winding, a first secondary winding and a second secondary winding. The magnetic core assembly includes a first magnetic cover, a second magnetic cover, a first magnetic leg, a second magnetic leg, a third magnetic leg and a fourth magnetic leg. The primary winding is wound around the first magnetic leg and the third magnetic leg. A first terminal of the first secondary winding is disposed between the first magnetic leg and the second magnetic leg. A second terminal of the first secondary winding is disposed between the third magnetic leg and the fourth magnetic leg. A first terminal of the second secondary winding is disposed between the first magnetic leg and the fourth magnetic leg. A second terminal of the second secondary winding is disposed between the second magnetic leg and the third magnetic leg.
Abstract:
A power conversion circuit includes a first terminal, a second terminal, a first switching conversion unit, a second switching conversion unit, a flying capacitor and a magnetic element. The first switching conversion unit includes a first switch and a third switch. The second switching conversion unit includes a second switch and a fourth switch. The magnetic element includes two first windings and a second winding. A first one of the two first windings is serially connected between the flying capacitor and the second terminal. A second one of the two first windings is serially connected between the second switch and the second terminal. The second winding is serially connected with the flying capacitor and the first one of the two first windings. A turn ratio between the second winding, the first one of the two first windings and the second one of the two first windings is N:1:1.
Abstract:
A power conversion module is disclosed. The power conversion module includes a power conversion module includes a circuit board and a first basic power unit. The first basic power unit is disposed on the circuit board and includes a magnetic device, a primary switch circuit, a first secondary rectifying circuit and a first positive output terminal pin. The primary switch circuit, the first secondary rectifying circuit, the magnetic device and the first positive output terminal pin are sequentially arranged on the circuit board along a first direction.
Abstract:
A magnetic device includes a magnetic core assembly, a first secondary winding, a second secondary winding and a primary winding. The magnetic core assembly includes a first magnetic leg, a second magnetic leg and a third magnetic leg. The first to third magnetic legs are arranged in sequence. The second magnetic leg is disposed between the first magnetic leg and the third magnetic leg. The first secondary winding is disposed between the first magnetic leg and the second magnetic leg, and the second secondary winding is disposed between the second magnetic leg and the third magnetic leg. A first terminal of the primary winding is disposed between the first magnetic leg and the second magnetic leg, and a second terminal of the primary winding is disposed between the second magnetic leg and the third magnetic leg.