Abstract:
An operator supervising a wearer of an exoskeleton is verified by performing a verification routine on the operator using the exoskeleton. If the verification routine is unsuccessful, the exoskeleton is caused to follow a pre-established response routine. If the verification routine is successful, movement of the exoskeleton is allowed.
Abstract:
A lower extremity orthosis, including at least one actuator configured to control a motion of at least one joint of a person wearing the orthosis, is provided with a handle including a force sensor configured to produce a signal representing a force applied to the handle. A controller, which is in communication with the force sensor and the at least one actuator, is configured to modify the motion based on the signal from the force sensor. The system can be particularly employed to enable a physical therapist to have input in controlling and modifying the positions and/or forces prescribed by the lower extremity orthosis during rehabilitation of the person.
Abstract:
A first exoskeleton is in communication with a central server or a peripheral device. The first exoskeleton collects first data and transmits the first data to the central server or peripheral device. The central server or peripheral device generates second data using the first data and transmits the second data to the first exoskeleton or a second exoskeleton.
Abstract:
An exoskeleton device provides for selectively adjusting an exoskeleton hip pivot/pivot position in the sagittal plane relative to the position of the hip pivot of a wearer of the exoskeleton. The exoskeleton hip pivots/pivot positions can be shifted forward or rearward relative to the hip pivots of the wearer and can either be automatically actuated by an exoskeleton control system or manually adjusted by the exoskeleton wearer. The invention particularly allows for differential hip placement in order to compensate for changing load or actuation conditions.
Abstract:
A first exoskeleton is in communication with a central server or a peripheral device. The first exoskeleton collects first data and transmits the first data to the central server or peripheral device. The central server or peripheral device generates second data using the first data and transmits the second data to the first exoskeleton or a second exoskeleton.
Abstract:
An exoskeleton includes a control system which incorporates a feedback system used to establish and communicate orthosis operational information to a physical therapist and/or to an exoskeleton user. The feedback system can take various forms, including employing sensors to establish a feedback ready value and communicating the value through one or more light sources which can be in close proximity to joints of the exoskeleton joints.
Abstract:
An exoskeleton includes strapping for coupling the exoskeleton to a wearer. The exoskeleton also includes a hip structure, a thigh link rotatably connected to the hip structure and a shank link rotatably connected to the thigh link. The weight of the exoskeleton is transferred to a surface on which the exoskeleton is standing through the hip structure, the thigh link and the shank link. An arm brace supports an arm of the wearer, and a telescopic link is rotatably connected to the arm brace. An energy storage device delivers power to a tool through a conduit, and a conduit-energy storage device coupling connects the conduit to the energy storage device.
Abstract:
An exoskeleton includes strapping for coupling the exoskeleton to a wearer. The exoskeleton also includes a hip structure, a thigh link rotatably connected to the hip structure and a shank link rotatably connected to the thigh link. The weight of the exoskeleton is transferred to a surface on which the exoskeleton is standing through the hip structure, the thigh link and the shank link. An arm brace supports an arm of the wearer, and a telescopic link is rotatably connected to the arm brace. An energy storage device delivers power to a tool through a conduit, and a conduit-energy storage device coupling connects the conduit to the energy storage device.
Abstract:
A lower extremity exoskeleton, configurable to be coupled to a person, includes: leg supports configurable to be coupled to the person's lower limbs and designed to rest on the ground during stance phases, with each leg support having a thigh link and a shank link; two knee joints, each configured to allow flexion and extension between respective shank and thigh links; an exoskeleton trunk configurable to be coupled to the person's upper body, rotatably connectable to the thigh links of the leg supports, allowing for the flexion and extension between the leg supports and the exoskeleton trunk; two hip actuators configured to create torques between the exoskeleton trunk and the leg supports; and at least one power unit capable of providing power to the hip actuators. In use, power is supplied to the hip actuators in an amount to reduce the energy consumed by a user during a walking cycle.
Abstract:
A lower extremity orthosis is configured to be coupled to across at least one joint of a person for gait assistance and can incorporate knee, thigh, hip and ankle/foot assistive orthotic devices which can be used in various combinations to aid in the rehabilitation and restoration of muscular function in patients with impaired muscular function or control.