Abstract:
Provided is a process comprising a selective ruthenium seed layer deposition with oxygen-free ruthenium precursors, followed by bulk deposition of metal-containing precursors such as tungsten, molybdenum, cobalt, ruthenium, and/or copper-containing precursors. The ruthenium seed layer deposition is highly selective for the conducting portions of the microelectronic device substrate while minimizing deposition onto the insulating surfaces of the microelectronic device substrate. In certain embodiments, the conducting portions of the substrate is chosen from titanium nitride, tungsten nitride, tantalum nitride, tungsten, cobalt, molybdenum, aluminum, and copper.
Abstract:
Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.
Abstract:
An organotitanium compound selected from the group consisting of: (i) organotitanium compounds of Formulae (I): wherein: each of R0, R1 and R2 is the same as or different from the others, and each is independently selected from organo substituents containing olefinic or alkynyl unsaturation; and each of R3, R4, R5, R6, and R7 is the same as or different from the others, and each is independently selected from H, C1-C12 alkyl, and substituents containing olefinic or alkynyl unsaturation; (ii) organotitanium compounds including at least one tris(alkylaminoalkyl)amine ligand and at least one dialkylamine ligand, wherein alkyl is C1-C6 alkyl; and (iii) organotitanium compounds including a cyclopentadienyl ligand, and a cyclic dienyl or trienyl ligand other than cyclopentadienyl Such organotitanium compounds are usefully employed in vapor deposition processes for depositing titanium on substrates, e.g., in the manufacture of microelectronic devices and microelectronic device precursor structures.
Abstract:
A silicon precursor composition is described, including a silylene compound selected from among: silylene compounds of the formula: wherein each of R and R1 is independently selected from organo substituents; amidinate silylenes; and bis(amidinate) silylenes. The silylene compounds are usefully employed to form high purity, conformal silicon-containing films of SiO2, Si3N4, SiC and doped silicates in the manufacture of microelectronic device products, by vapor deposition processes such as CVD, pulsed CVD, ALD and pulsed plasma processes. In one implementation, such silicon precursors can be utilized in the presence of oxidant, to seal porosity in a substrate comprising porous silicon oxide by depositing silicon oxide in the porosity at low temperature, e.g., temperature in a range of from 50° C. to 200° C.
Abstract:
Provided is an efficient and effective process for preparing certain organotin compounds having alkyl and alkylamino substituents. The process provides the organotin compounds in a highly pure crystalline form which are particularly useful as precursors in the deposition of high-purity tin oxide films in, for example, extreme ultraviolet light (EUV) lithography techniques used in the manufacture of certain microelectronic devices.
Abstract:
The invention provides a facile process for preparing certain organotin compounds having alkyl and aryl substituents. These compounds are useful as intermediates in the synthesis of certain alkylamino- and alkoxy-substituted alkyl tin compounds, which are in turn useful as precursors in the deposition of high-purity tin oxide films in, for example, extreme ultraviolet light (EUV) lithography techniques used in microelectronic device manufacturing.
Abstract:
Provided are complexes useful in the conversion of chloro- and bromo-silanes to highly desired iodosilanes such as H2SiI2 and HSiI3, via a halide exchange reaction. The species which mediates this reaction is an iodide reactant comprising aluminum.
Abstract:
The present disclosure includes a method of obtaining an alkyltintrihalide, obtaining a solvent, and contacting the alkyltintrihalide and the solvent, thereby forming an alkyltintrihalide adduct. Also described is a composition including: an alkyltintrihalide adduct of the formula: RSnX3·(solv)n, wherein: R is a substituted C1-C5 alkyl, an unsubstituted C1-C5 alkyl, a substituted C1-C5 alkenyl, or an unsubstituted C1-C5 alkenyl; X is Cl, Br, or I; solv is a solvent; and n is at least 1.
Abstract:
Provided is a facile methodology for preparing certain organotin compounds having alkyl and alkylamino or alkyl and alkoxy substituents. The process provides the organotin compounds in a highly pure form which are particularly useful as precursors in the deposition of high-purity tin oxide films in, for example, extreme ultraviolet light (EUV) lithography techniques used in the manufacture of certain microelectronic devices.
Abstract:
Some embodiments relate to precursors (including intermediate precursors) and related methods. To prepare an intermediate precursor, a mixture of bis (arene) metal complexes is combined with a first arene. The mixture of bis (arene) metal complexes and the first arene are heated and subsequently cooled. Upon cooling, a bis (first arene) metal complex precipitates from solution to obtain an intermediate precursor with high purity. To prepare a precursor, the bis (first arene) metal complex is contacted with a second arene and heated to obtain a precursor with high purity.