Abstract:
An apparatus and method for resuscitating a patient suffering from cardiac arrest or another condition in which normal circulation has been interrupted. A ventilator is used for delivering a gas mixture to the patient. The ventilator is configured to adjust the partial pressure of CO2 to one or more partial pressures high enough to slow expiration of CO2 from the patient's lungs and thereby maintain a reduced pH in the patient's tissues for a period of time following return of spontaneous circulation.
Abstract:
A medical device of the type used for assisting a user in manually delivering repetitive therapy to a patient (e.g., chest compressions or ventilations in cardiac resuscitation), the device comprising a feedback device configured to generate feedback cues to assist the user in timing the delivery of the repetitive therapy, at least one sensor or circuit element configured to detect actual delivery times, at which the user actually delivers the repetitive therapy, and a processor, memory, and associated circuitry configured to compare the actual delivery times to information representative of desired delivery times to determine cue times at which the feedback cues are generated by the feedback device.
Abstract:
A device for assisting a caregiver in delivering therapy to a patient, the device comprising a user interface configured to deliver prompts to a caregiver to assist the caregiver in delivering therapy to a patient; at least one sensor configured to detect the caregiver's progress in delivering the therapy, wherein the sensor is other than an electrode in an electrical contact with the body; a memory in which a plurality of different prompts are stored; a processor configured to determine which of the different prompts should be selected for delivery based on the progress detected by the sensor.
Abstract:
A device for assisting a caregiver in delivering cardiac resuscitation to a patient, the device comprising a user interface configured to deliver prompts to a caregiver to assist the caregiver in delivering cardiac resuscitation to a patient; at least one sensor configured to detect the caregiver's progress in delivering the cardiac resuscitation, wherein the sensor is configured to provide a signal containing information indicative of ventilation; a memory in which a plurality of different prompts are stored, including at least one ventilation progress prompt to guide the rescuer's performance of ventilation; a processor configured to process the output of the sensor to determine a parameter descriptive of ventilation progress and to determine whether the ventilation progress prompt should be selected for delivery. Possible parameters descriptive of ventilation progress include ventilation rate, delivered tidal volume, and flow rate.
Abstract:
In one aspect, a medical system includes a medical device having a housing, and a cable connectable to the housing; and a cable retainer associated with the medical device. The cable retainer has a constantly exposed opening maintained at a size sufficient to receive the cable in a bundled state.
Abstract:
A color display device comprising at least two substrates spaced from each other, the substrates each having an internal and an external surface, the internal surfaces of the two substrates facing each other, at least one of the substrates being transparent; electrodes positioned to establish a field in the space between the two substrates; an optically active material occupying at least a portion of the space between the two substrates and having optical properties influenced by the field; a color filter layer comprising color filter elements that alter the color of light traveling through the color filter layer, the color filter elements being positioned outside of the space between the two substrates; and a three-dimensional black mask comprising mask elements aligned with the boundaries between adjoining color filter elements. The three-dimensional black mask structure allows the color filter to be placed on the exterior of the display while still maintaining good color performance under off-axis viewing conditions.
Abstract:
A resuscitation system that includes at least two defibrillation electrodes configured to be applied to the exterior of the chest of a patient for delivering a defibrillation shock, a source of one or more ECG signals from the patient, a defibrillation circuit for delivering a defibrillation shock to the defibrillation electrodes, a control box that receives and processes the ECG signals to determine whether a defibrillation shock should be delivered or whether CPR should be performed, and that issues instructions to the user either to deliver a defibrillation shock or to perform CPR, wherein the determination of whether CPR should be performed and the instructions to perform CPR can occur at substantially any point during a rescue.
Abstract:
An apparatus for assisting a rescuer in performing chest compressions during CPR on a victim, the apparatus comprising a pad or other structure configured to be applied to the chest near or at the location at which the rescuer applies force to produce the chest compressions, at least one sensor connected to the pad, the sensor being configured to sense movement of the chest or force applied to the chest, processing circuitry for processing the output of the sensor to determine whether the rescuer is substantially releasing the chest following chest compressions, and at least one prompting element connected to the processing circuitry for providing the rescuer with information as to whether the chest is being substantially released following chest compressions.
Abstract:
The invention provides a thin, lightweight, durable electro-optic display assembly that is significantly mote flexible than known plastic electro-optic displays. The enhanced flexibility of the plastic display assemblies according to the invention is achieved by employing laminate display structures in which there is little, if any, bonding between adjacent layers of the laminate assembly.
Abstract:
There is a liquid crystal display device with two substrates facing and spaced from each other, at least one of the substrates being transparent. Electrodes are positioned to establish an electric field in the space between the two substrates. One or more space elements are located between the substrates. One or more polymer supports are located primarily in the vicinities of the spacer elements. The polymer supports extend between the two substrates and have been polymerized in situ in response to polymerization initiating or enhancing (PIE) material carried on or within the spacer elements. Electrooptic material (e.g., liquid crystal) fills at least a portion of the space between the two substrates.