Abstract:
A system for characterizing material properties in miniature semiconductor structures performs a scatterometry analysis on inelastically scattered light. The system can include a narrowband probe beam generator and a detector. A single wavelength probe beam from the narrowband probe beam generator produces scattered light from a measurement pattern on a test sample. The scattered light is measured by the detector, and the measurement data (e.g., Raman spectrum) is used in a scatterometry analysis to determine material properties for the measurement pattern. The detector can measure either incoherent inelastically scattered light (e.g., using a spectrometer) or coherent inelastically scattered light (e.g., using an array detector). If the measurement pattern dimensions are substantially similar to actual device dimensions, the material property distributions determined for the measurement pattern can be applied to the actual devices on the test sample.
Abstract:
X-ray monochromators and electron probe micro-analysis (EPMA) systems using such monochromators are disclosed. A turretless x-ray monochromator may have a cassette of reflectors instead of a turret. The cassette stores a plurality of reflectors that can be inserted into a conventional Rowland circle monochromator geometry. A transfer mechanism selectively moves reflectors from the cassette to a reflector positioner. The use of the cassette allows each reflector to be placed closer to a source of x-rays, thereby allowing a larger solid angle for x-ray collection. An alternative x-ray monochromator uses a non-focusing reflector that can be fixed, scanned axially or scanned radially to provide large solid angle detection of x-rays at various energies with a single reflector.
Abstract:
A system for analyzing a thin film uses an energy beam, such as a laser beam, to remove a portion of a contaminant layer formed on the thin film surface. This cleaning operation removes only enough of the contaminant layer to allow analysis of the underlying thin film, thereby enhancing analysis throughput while minimizing the chances of recontamination and/or damage to the thin film. An energy beam source can be readily incorporated into a conventional thin film analysis tool, thereby minimizing total analysis system footprint. Throughput can be maximized by focusing the probe beam (or probe structure) for the analysis operation at the same location as the energy beam so that repositioning is not required after the cleaning operation. Alternatively, the probe beam (structure) and the energy beam can be directed at different locations to reduce the chances of contamination of the analysis optics.
Abstract:
An apparatus for detecting properties of a sample. An electron beam generator produces an electron beam and directs the electron beam at a desired point on the sample. The sample thereby emits characteristic x-rays at takeoff angles. A collimator receives and parallelizes the x-rays and converts the takeoff angles of the x-rays to positional differences between the parallelized x-rays. A diffractor receives and deflects the x-rays. A position sensitive detector receives the deflected x-rays and detects the positional differences between the x-rays, and generates signals that are characteristic of the received x-rays. An analyzer receives the signals from the detector and determines the properties of the sample based at least in part on the positional differences between the x-rays.
Abstract:
A capillary tube used to transfer a liquid sample into a detection cell following separation by a chromatographic system is modified by plugging or otherwise severely restricting its flow. Near its plugged end, said tube is drilled to provide a plurality of holes or ports perpendicular thereto and penetrating into the central flowing core of said tube so as to direct outflow from the tube perpendicularly therefrom. The outer diameter of this so-modified capillary tube is selected to be of a size comparable to, though smaller than, the detection cell diameter into which it transfers the flowing sample. In this manner, fluid transferred into a detection cell by said modified capillary tube will be split into a plurality of smaller streams flowing outwardly therefrom and striking the adjacent detector cell walls almost immediately. Because of the close proximity of the emerging split streams to the walls of the detection cell, the eddies produced thereby will be very small and the contents of the detection cell will be homogenized rapidly.
Abstract:
The incorporation of certain classes of solid state lasers into light scattering instrumentation is desirable because of their compact structure. However, mode hopping often causes the output power produced by such lasers to be unstable. The frequency of such output power fluctuations is often so broad that output power monitoring means, characteristic of the light scattering instrumentation into which such lasers are incorporated, cannot track accurately the temporal output power fluctuations. A method, and associated apparatus, is described whereby the laser drive current is modulated at low frequency and amplitude sufficient to induce and thereby control mode hopping so as to permit accurate measurement of the ratio of light scattering signals to the laser output power.
Abstract:
A system for characterizing material properties in miniature semiconductor structures performs a scatterometry analysis on inelastically scattered light. The system can include a narrowband probe beam generator and a detector. A single wavelength probe beam from the narrowband probe beam generator produces scattered light from a measurement pattern on a test sample. The scattered light is measured by the detector, and the measurement data (e.g., Raman spectrum) is used in a scatterometry analysis to determine material properties for the measurement pattern. The detector can measure either incoherent inelastically scattered light (e.g., using a spectrometer) or coherent inelastically scattered light (e.g., using an array detector). If the measurement pattern dimensions are substantially similar to actual device dimensions, the material property distributions determined for the measurement pattern can be applied to the actual devices on the test sample.
Abstract:
Thin film thickness measurement accuracy in x-ray reflectometry systems can be enhanced by minimizing scattering and beam spreading effects. A reflectometry system can include an x-ray tube that can produce an x-ray beam having any cross-sectional shape by scanning an electron beam in an appropriate pattern over a target in an x-ray tube. For example, the electron beam can be scanned over the target in a pattern having a non-unitary aspect ratio, so that the x-ray beam is generated from a source region having a non-unitary aspect ratio. The elongation allows the beam direction dimension to be substantially reduced, without causing overheating of the target. By blocking portions of the x-ray beam focused on the thin film and generating reflectivity curves in increments, the effects of scattering can be minimized.
Abstract:
A thin film analysis system includes multi-technique analysis capability. Grazing incidence x-ray reflectometry (GXR) can be combined with x-ray fluorescence (XRF) using wavelength-dispersive x-ray spectrometry (WDX) detectors to obtain accurate thickness measurements with GXR and high-resolution composition measurements with XRF using WDX detectors. A single x-ray beam can simultaneously provide the reflected x-rays for GXR and excite the thin film to generate characteristic x-rays for XRF. XRF can be combined with electron microprobe analysis (EMP), enabling XRF for thicker films while allowing the use of the faster EMP for thinner films. The same x-ray detector(s) can be used for both XRF and EMP to minimize component count. EMP can be combined with GXR to obtain rapid composition analysis and accurate thickness measurements, with the two techniques performed simultaneously to maximize throughput.
Abstract:
An apparatus adapted for sensing characteristics of a layer disposed substantially within a plane, without making physical contact with the layer. An x-ray source produces x-rays, where the x-ray source has an axis disposed substantially perpendicular to the plane of the layer. An x-ray reflector has an axis disposed substantially perpendicular to the plane of the layer. The x-ray reflector receives the x-rays from the x-ray source and directs the x-rays received to a target spot on the layer at angles whereby the x-rays reflect off of the layer as reflected x-rays at a reflection angle. The reflected x-rays have properties that are indicative of the characteristics of the layer. A first x-ray blocking barrier is disposed substantially perpendicular to the plane of the layer, above the target spot. The first x-ray blocking barrier blocks at least a portion of the x-rays director toward and reflected off of the layer. The first x-ray blocking barrier and the layer define a gap, where the size of the gap determines at least in part a throughput and an angular resolution of the x-rays reflected off the layer. A receptor receives the reflected x-rays and produces signals based on the properties of the reflected x-rays. An analyzer receives the signals from the receptor and determines the characteristics of the layer based at least in part on the properties of the reflected x-rays.