Abstract:
The substrate with a multilayer reflective film includes a substrate and the multilayer reflective film configured to reflect exposure light, the multilayer reflective film comprising a stack of alternating layers on a substrate, the alternating layers including a low refractive index layer and a high refractive index layer, in which the multilayer reflective film contains molybdenum (Mo) and at least one additive element selected from nitrogen (N), boron (B), carbon (C), zirconium (Zr), oxygen (O), hydrogen (H) and deuterium (D), and the crystallite size of the multilayer reflective film calculated from a diffraction peak of Mo (110) by X-ray diffraction is 2.5 nm or less.
Abstract:
Disclosed is a mask blank substrate for use in lithography, wherein a main surface of the substrate satisfies a relational equation of (BA70−BA30)/(BD70−BD30)≧350 (%/nm), and has a maximum height (Rmax)≦1.2 nm in a relation between a bearing area (%) and a bearing depth (nm) obtained by measuring, with an atomic force microscope, an area of 1 μm×1 μm in the main surface on the side of the substrate where a transfer pattern is formed, wherein BA30 is defined as a bearing area of 30%, BA70 is defined as a bearing area of 70%, and BD70 and BD30 are defined to respectively represent bearing depths for the bearing area of 30% and the bearing area of 70%.
Abstract:
An object of the present invention is to provide a substrate with a multilayer reflective film, which gives a reflective mask achieving high reflectance and exhibiting excellent cleaning resistance. The present invention is directed to a substrate with a multilayer reflective film, which has: a substrate; a multilayer reflective film, formed on the substrate, comprising a layer that includes Si as a high refractive-index material and a layer that include a low refractive-index material, the layers being periodically laminated; a Ru protective film, formed on the multilayer reflective film, for protecting the multilayer reflective film; and a block layer, formed between the multilayer reflective film and the Ru protective film, for preventing the migration of Si to the Ru protective film, wherein the surface layer of the multilayer reflective film opposite from the substrate is the layer comprising Si, and at least part of the Si is diffused into the block layer.