Abstract:
An illumination system of a microlithographic exposure apparatus comprises a condenser for transforming a pupil plane into a field plane. The condenser has a lens group that contains a plurality of consecutive lenses. These lenses are arranged such that a light bundle focused by the condenser on an on-axis field point converges within each lens of the lens group. At least one lens of the lens group has a concave surface. The illumination system may further comprise a field stop objective that at least partly corrects a residual pupil aberration of the condenser.
Abstract:
The disclosure relates to a projection exposure apparatus for EUV microlithography which includes an illumination system for illuminating a pattern, and a projection objective for imaging the pattern onto a light-sensitive substrate. The projection objective has a pupil plane with an obscuration. The illumination system generates light with an angular distribution having an illumination pole which extends over a range of polar angles and a range of azimuth angles and within which the light intensity is greater than an illumination pole minimum value. From the illumination pole toward large polar angles a dark zone is excluded within which the light intensity is less than the illumination pole minimum value, and which has in regions a form corresponding to the form of the obscuration of the pupil plane.
Abstract:
An optical imaging system for inspection microscopes with which lithography masks can be checked for defects particularly through emulation of high-aperture scanner systems. The microscope imaging system for emulating high-aperture imaging systems comprises imaging optics, a detector and an evaluating unit, wherein polarizing optical elements are selectively arranged in the illumination beam path for generating different polarization states of the illumination beam and/or in the imaging beam path for selecting different polarization components of the imaging beam, an optical element with a polarization-dependent intensity attenuation function can be introduced into the imaging beam path, images of the mask and/or sample are received by the detector for differently polarized beam components and are conveyed to the evaluating unit for further processing.
Abstract:
A projection objective for microlithography includes at least one optical assembly with optical elements which are disposed between an object plane and an image plane. The optical assembly includes at least one optical terminal element, which is disposed close to the image plane. A first immersion liquid is disposed on the image oriented surface of the optical terminal element. A second immersion liquid is disposed on the object oriented surface of the optical terminal element. The object oriented surface includes a first surface section for the imaging light to enter into the terminal element, and the image oriented surface includes a second surface portion for the imaging light to exit from the terminal element.
Abstract:
An optical system of a microlithographic projection exposure apparatus permits comparatively flexible and fast influencing of the intensity distribution and/or the polarization state. The optical system includes at least one layer system that is at least one-side bounded by a lens or a mirror. The layer system is an interference layer system of several layers and has at least one liquid or gaseous layer portion with a maximum thickness of one micrometer (μm), and a manipulator for manipulation of the thickness profile of the layer portion.
Abstract:
A method and to an apparatus for structuring a radiation-sensitive material are disclosed. The method can include using a dynamic mask to generate a first radiation pattern in a layer of the radiation-sensitive material, where the first radiation pattern has a thickness that is at most 50% of the thickness of the layer of the radiation-sensitive material. The method can also include using the dynamic mask to generate a second radiation pattern in the layer of the radiation-sensitive material. The dynamic mask can be configured to change its structure dynamically, and the first radiation pattern can be different from the second radiation pattern.
Abstract:
The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
Abstract:
The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
Abstract:
A projection exposure apparatus for the exposure of a radiation-sensitive substrate arranged in the region of an image surface of a projection objective with at least one image of a pattern of a mask that is arranged in the region of an object surface of the projection objective has a light source for emitting ultraviolet light from a wavelength band having a bandwidth Δλ>10 pm around a central operating wavelength λ>200 nm; an illumination system for receiving the light from the light source and for directing illumination radiation onto the pattern of the mask; and a projection objective for the imaging of the structure of the mask onto a light-sensitive substrate. The projection objective is a catadioptric projection objective having at least one concave mirror arranged in a region of a pupil surface of the projection objective, and a negative group having at least one negative lens arranged in direct proximity to the concave mirror in a region near the pupil surface, where a marginal ray height (MRH) of the imaging is greater than a chief ray height (CRH).
Abstract:
In a method for describing, evaluating and improving optical polarization properties of a projection objective of a microlithographic projection exposure apparatus, the Jones or Stokes vectors are firstly determined at one or more points in the exit pupil of the projection objective. These are then described at least approximately as a linear superposition of predetermined vector modes with scalar superposition coefficients. The optical polarization properties can subsequently be evaluated on the basis of the superposition coefficients.