Abstract:
There is provided a wavelength variable light source system capable of changing wavelength and intensity of output signal light and of improving preset accuracy and stability of the wavelength and strength of the output signal light. The system determines the both or either one of a target value for controlling wavelength and a target value for controlling intensity of output signal light of a wavelength variable light source by correlating a combination of the target wavelength and the target light output intensity specified from a higher-level device and controls operation states of the wavelength variable light source so that output values of monitoring circuit s for monitoring the operation state of the wavelength variable light source converge to the target values.
Abstract:
An optical multiplexer/demultiplexer includes first and second directional coupling portions in which first and second optical waveguides are provided to transfer a light between the first and second optical waveguides. Lengths of the first and second optical waveguides have a difference (&Dgr;L). A product between the difference (&Dgr;L) and a refractive index (n) of the first and second optical waveguides approximates a product between a cross-propagation wavelength (&lgr;2) and a value (N′) substantially equal to an integer (N), and a product between a through-propagation wavelength (&lgr;1) and the value (N′)±0.5. Power coupling ratio differences are at least approximately 1% and at most approximately 10%. Third power coupling ratios with respect to an average wavelength of the cross-propagation wavelength (&lgr;2) and the through-propagation wavelength (&lgr;1) are at least approximately 45% and at most approximately 55%.
Abstract:
An optical waveguide circuit capable of controlling polarization crosstalk is provided. An under cladding is formed on a silicon substrate (11). A core is formed on the under cladding and has a waveguide structure in which one or more optical input waveguides (12) arranged side by side are connected at their exit ends with a first slab guide (13), which is connected at its exit end with an arrayed waveguide (14) composed of plural channel waveguides (14a) that are different in length with the difference preset, and the arrayed waveguide (14) is connected at its exit end with a second slab waveguide (15), which is connected at its exit end with a plurality of optical output waveguides (16). The top of the core is covered with an over cladding to form an optical waveguide portion (10) composed of the under and over claddings and the core. A plurality of light beams having different wavelengths are entered to the core in the multiplexed manner, and the entered light beams are outputted separately on the basis of the wavelength. The claddings and the core are formed from silica glass. The birefringence B in the optical waveguide portion (10) is set so as to satisfy |B|≧1.2×10−4 to reduce polarization crosstalk to −20 dB or less.
Abstract:
An arrayed waveguide grating type optical multiplexer/demultiplexer includes input waveguides, an input-side slab waveguide, an arrayed waveguide diffraction grating, an output-side slab waveguide, and output waveguides. A junction between each input waveguide and the input-side slab waveguide is tapered such that the end portion of the input waveguide gradually widens in the width direction of the path toward the input-side slab waveguide, and includes two separate small-width waveguide portions arranged separately from the end portion of the input waveguide and extending in a line with taper of the tapered end portion, and a single large-width waveguide portion arranged separately from the small-width waveguide portions.
Abstract:
An apparatus for bioluminescence measurement, which measures a substance in vivo on the basis of bioluminescence, is provided with a device for supplying a reagent or buffer solution kept at a constant temperature in a thermostat tank to a container for culturing cells, so that the temperature of the container can be kept constant and the reagent or buffer solution in the container can be stirred.
Abstract:
This invention is for obtaining ratios of Raman spectrum by using a referential sample representing at least two of Raman spectral lines, and for correcting fluorescence intensities of the sample to measured on the basis of the obtained ratios of Raman spectrum.