Abstract:
The present invention relates to an optical wavelength multiplexing and dividing device of an array waveguide type diffraction lattice, which is capable of separating and picking up wavelength-multiplexed signals of various wavelengths, which are used in optical transmissions. An input side slab waveguide (3), a plurality of juxtaposed array waveguides (4), an output side slab waveguide (5) and a plurality of optical output waveguides (6) are connected, in order, to the outgoing sides of a plurality of optical input waveguides (2), thereby forming a waveguide pattern. The array waveguides (4) are formed so as to have lengths different from each other to cause the phases of individual lights to be deviated after propagating through the respective array type waveguides (4), wherein different lights as per wavelength are condensed at the incident ends (7) of optical output waveguides 6 by passing through the output side slab waveguides (5) and are outputted through the optical output waveguides (6). The incident ends (7a) of the optical output waveguides (6) are provided at a light condensing predicted position of lights of the respective wavelengths where the lights are predicted to be condensed through the output side slab waveguide (5), and the incident ends (7b) of the optical output waveguides (6) are provided at a light condensing prediction corrected position where the light condensing position is shifted with respect to the light condensing predicted position.
Abstract:
Provided herein is an elementary analysis apparatus allowing size and weight reduction and capable of performing atomic adsorption spectrometry by an electrothermal method and of forming plasma without using a gas. A sample is supplied from a liquid feed portion through a flow channel to an atomizing portion, and a voltage is applied between electrodes. When the voltage is applied to the electrodes, electric current and electric field are concentrated in the atomizing portion and bubbles are generated to cause a plasma in the bubbles, and element in the sample is atomized by the plasma. Light that irradiates the atomizing portion from a light source and is transmitted therethrough is received, for example, by an optical fiber or the like and split by a spectrophotometer. The amount of the split light is detected by a detector and analyzed by a computer.
Abstract:
An optical multiplexer/demultiplexer has a plurality of Mach-Zehnder optical interferometer multiplexing/demultiplexing circuits connected in plural stages, at least one of the plurality of Mach-Zehnder optical interferometer multiplexing/demultiplexing circuits including a first optical waveguide, a second optical waveguide disposed along the first optical waveguide, a first directional coupling portion that connects a first part of the first optical waveguide to a first part of the second optical waveguide, and a second directional coupling portion that connects a second part of the first optical waveguide to a second part of the second optical waveguide. A relationship among a coupling portion length LR of at least one of the first and second directional coupling portions, a complete coupling length LC of at least one of the first and second directional coupling portions and a lead portion coupling length Le of at least one of the first and second directional coupling portions, is substantially: π 2 × L e + L R L C = π 4 .
Abstract:
Disclosed is a wavelength multiplexing module which provides stable multiplexed output power. The wavelength multiplexing module comprises a plurality of pumping sources for outputting lights of different wavelengths, and a wavelength multiplexer for multiplexing the lights output from the pumping sources. The wavelength multiplexer is provided with optical input sections for respectively receiving the lights output from the pumping sources. Respectively provided between the optical input sections and the pumping sources are depolarizers each of which causes a degree of polarization of the light output from an associated one of the pumping sources to approach zero. Each depolarizer has two polarization-maintaining optical fibers connected in series on an optical path in such a way that primary optic axes of the polarization-maintaining optical fibers obliquely intersect each other.
Abstract:
A hybrid optical waveguide circuit chip capable of predicting optical characteristics of a first optical waveguide circuit connected to optical elements where it is difficult to measure the optical characteristics. In the chip, a second optical waveguide circuit is disposed adjacent to the first optical waveguide circuit. One end face of the second optical waveguide circuit is terminated at one chip end face A of the chips, and at least one of the optical waveguide end faces at the other side of the second optical waveguide circuit is terminated at the other chip end face B of the chip, wherein the optical characteristics of the second optical waveguide circuit are measured, and the measured values are predicted as substantial optical characteristics of the first optical waveguide.
Abstract:
In a fluorescence spectrophotometer a first spectrum of fluorescence emitted by a sample in a state where the wavelength of excitation light is fixed to an arbitrary wavelength; a second spectrum of fluorescence emitted by the sample in a state where the wavelength of excitation light is changed to another wavelength; and the wavelength when corresponding peaks in the two spectra are approximately in accordance with each other is set for the fluorescence wavelength emitted by said sample.
Abstract:
A spectrofluorophotometer enabling spectrum correcting treatment to be done highly accurately, including an intercepter the incident light in a fluorescence detecting system, and an interceptor intercepting the incident light in a monitoring detecting system, so as to carry out zero point correction for both of these detecting systems.
Abstract:
This invention relates to a device for measuring fluorescence polarization, which permits to measure the degree of fluorescence polarization in a short time and also its variations in time.In order to achieve this object, a device for measuring fluorescence polarization according to this invention is provided with a control means permitting to set arbitrarily the polarization angle of the polarizer and that of the analyzer, by means of which the polarization angle of the polarizer or the analyzer is successively varied to arbitrary values so as to obtain polarization angles and fluorescence intensities corresponding thereto so that the degree of fluorescence polarization is obtained by using a plurality of the polarization angles and the fluorescence intensities corresponding thereto.
Abstract:
A spectrophosphorimeter with a single spectrometer so as to obviate the need of a couple of spectrometers of conventional spectrophosphorimeters, wherein one spectrometer is operated as an excitation-side spectrometer only when the light is allowed to pass a light interceptor, and the other spectrometer works as a phosphorescence-side spectrometer only when the light is substantially interrupted. The single spectrometer is used on the excitation side when the light is allowed to pass and on the phosphorescence side when the light is interrupted.
Abstract:
There is provided a wavelength variable light source system capable of changing wavelength and intensity of output signal light and of improving preset accuracy and stability of the wavelength and strength of the output signal light. The system determines the both or either one of a target value for controlling wavelength and a target value for controlling intensity of output signal light of a wavelength variable light source by correlating a combination of the target wavelength and the target light output intensity specified from a higher-level device and controls operation states of the wavelength variable light source so that output values of monitoring circuits for monitoring the operation state of the wavelength variable light source converge to the target values.