Abstract:
A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Peak power handling capability of fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive pulse stretching in the presence of self-phase modulation and gain results in the formation of high-power parabolic pulses. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. Positive dispersion optical amplifiers are used to improve transmission characteristics. An optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropagates within the Raman amplifier fiber with respect to the pump pulses.
Abstract:
Coherent and compact supercontinuum light sources for the mid IR spectral regime are disclosed and exemplary applications thereof. The supercontinuum generation is based on the use of highly nonlinear fibers or waveguides. In at least one embodiment the coherence of the supercontinuum sources is increased using low noise mode locked short pulse sources. Compact supercontinuum light sources can be constructed with the use of passively mode locked fiber or diode lasers. Wavelength tunable sources can be constructed using appropriate optical filters or frequency conversion sections. Highly coherent supercontinuum sources further facilitate coherent detection schemes and can improve the signal/noise ratio in lock in detection schemes.
Abstract:
A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Peak power handling capability of fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive pulse stretching in the presence of self-phase modulation and gain results in the formation of high-power parabolic pulses. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. Positive dispersion optical amplifiers are used to improve transmission characteristics. An optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropagates within the Raman amplifier fiber with respect to the pump pulses.
Abstract:
The present invention relates to frequency rulers. At least one embodiment includes a mode locked pump source operated at pulse repetition rate, and a pump output having a pump carrier envelope offset frequency. A nonlinear optical system outputs a frequency ruler spectrum comprising individual frequency modes. The frequency modes may be characterized by a frequency spacing which is an integer multiple of the repetition rate and by distinct ruler carrier envelope offset frequencies which exhibit at least one discontinuity across the frequency output. The ruler carrier envelope offset frequencies are substantially locked to the carrier envelope offset frequency of the pump laser. One preferred embodiment includes a frequency doubled, doubly resonant, non-degenerate OPO (DNOPO), a supercontinuum generation (SC) stage and at least one reference laser arranged downstream from a Tm fiber-based pump source. A plurality of beat signals generated therefrom provide for stabilization of the system.
Abstract:
The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference δfr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates. A CDSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.
Abstract:
The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
Abstract:
The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference δfr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates. A CDSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.
Abstract:
The present invention relates to a trace gas detection system. At least one embodiment includes a frequency spectrum comprising a 1st comb and an enhancement cavity characterized by having a 2nd comb of spectral resonances. The enhancement cavity contains a sample gas for spectroscopic measurement. A dither mechanism is configured to modulate the relative spectral position between the combs at a dither frequency, fd. The dither mechanism, in conjunction with a feedback mechanism, stabilizes the location of said 1st comb lines with respect to the resonances of said 2nd comb over a time scale much greater than a dither period, Td=1/fd. A time-averaged output from the enhancement cavity is provided to a spectroscopic measurement tool, for example a Fourier transform spectrometer. The system is capable of detecting volatile organic compounds, endogenous compounds, and may be configured for cancer detection.
Abstract:
The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference δfr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates. A CDSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.