Abstract:
In a wireless charging device that includes a resonator having coil windings, a magnetic field can be generated by the resonator. The wireless charging device can include a feed point connected to an inner winding of the coil windings of the resonator. The resonator can inductively couple with a power receiving unit such that the an outer winding of the coil windings limit Eddy current generation in one or more conductive surfaces positioned adjacent to the power receiving unit. The feed point can be selectively connected to the inner winding of the coil in a first mode of operation and the outer winding of the coil in a second mode of operation. The inner winding can have a larger current than the outer winding.
Abstract:
Example wirelessly powered unmanned aerial vehicles and tracks for providing wireless power are described herein. An example apparatus includes a track section having a transmitter coil to generate an alternating magnetic field and an unmanned aerial vehicle having a receiver coil. The alternating magnetic field induces an alternating current in the receiver coil when the unmanned aerial vehicle is disposed in the alternating magnetic field.
Abstract:
Techniques for coil configuration in a wireless power transmitter in a system, method, and apparatus are described herein. An apparatus for coil configuration in a wireless power transmitter may include a transmitting coil comprising an inner portion and an outer portion, and a switch configured to initiate current on the inner portion based on a detected condition.
Abstract:
Example wirelessly powered unmanned aerial vehicles and tracks for providing wireless power are described herein. An example apparatus includes a track section having a transmitter coil to generate an alternating magnetic field and an unmanned aerial vehicle having a receiver coil. The alternating magnetic field induces an alternating current in the receiver coil when the unmanned aerial vehicle is disposed in the alternating magnetic field.
Abstract:
Methods, apparatus, systems and articles of manufacture to wirelessly power an unmanned aerial vehicle are disclosed. An example unmanned aerial vehicle (UAV) includes a first electrode assembly to capacitively couple to a first power cable. The example UAV includes a second electrode assembly to capacitively couple to a second power cable. The first and second electrode assemblies, when capacitively coupled to the respective first and second power cables, are to receive power from at least one of the first and second power cables. The example UAV includes a power storage circuit to store the received power.
Abstract:
An apparatus is described. The apparatus includes a transmission coil and a power amplifier. The power amplifier includes a microcontroller and a memory. The memory includes instructions to determine electric current output of the power amplifier, perform a lookup of load reactance range based on target electric current, detect load impedance, calculate reactance based on the load impedance, determine if reactance is within the load reactance range, and adjust reactance shift compensation to bring the reactance within the load reactance range if the reactance is not within the load reactance range.
Abstract:
The disclosure relates to a method, apparatus and system for reconfigurable wirelessly charging architecture for extended power capability and charging area. In certain embodiments, the disclosed embodiments relate provide a scalable wireless charging architecture which may include a constant voltage operating point between power amplifier (PA) and resonator modules to thereby support dynamic expansion of service area for larger infrastructure deployment.
Abstract:
The disclosure generally relates to a method and apparatus for reducing or substantially eliminating, the electric field above a wireless charging station, in one embodiment, a wireless charging station is formed from a length of conductive wire forming a multi turn spiral coil having a plurality of turns around one or more axis. A plurality of discrete capacitors are selected, and positioned at each of the respective plurality of turns. The plurality of discrete capacitors may be connected in series. The capacitance value of each of the plurality of capacitors may be selected to substantially reduce the electric filed above the surface of the charging station.
Abstract:
Example wirelessly powered unmanned aerial vehicles and tracks for providing wireless power are described herein. An example apparatus includes a track section having a transmitter coil to generate an alternating magnetic field and an unmanned aerial vehicle having a receiver coil. The alternating magnetic field induces an alternating current in the receiver coil when the unmanned aerial vehicle is disposed in the alternating magnetic field.
Abstract:
In a wireless charging device that includes a resonator having coil windings, a magnetic field can be generated by the resonator. The wireless charging device can include a feed point connected to an inner winding of the coil windings of the resonator. The resonator can inductively couple with a power receiving unit such that the an outer winding of the coil windings limit Eddy current generation in one or more conductive surfaces positioned adjacent to the power receiving unit. The feed point can be selectively connected to the inner winding of the coil in a first mode of operation and the outer winding of the coil in a second mode of operation. The inner winding can have a larger current than the outer winding.