Abstract:
An apparatus for generating a data signal comprises a processing circuit configured to generate the data signal, the data signal comprising a sequence of a first signal edge of a first type, a second signal edge of a second type, and a third signal edge of the first type, the first signal edge and the second signal edge being separated by a first time period corresponding to first data to be transmitted, and the second signal edge and the third signal edge being separated by a second time period corresponding to second data to be transmitted. An output interface circuit is configured to output the data signal.
Abstract:
Techniques for coil configuration in a wireless power transmitter in a system, method, and apparatus are described herein. An apparatus for coil configuration in a wireless power transmitter may include a transmitting coil comprising an inner portion and an outer portion, and a switch configured to initiate current on the inner portion based on a detected condition.
Abstract:
Techniques of providing increased safety for wireless systems are described herein. A wireless power receiving unit includes a first receiving coil to inductively couple to a wireless power transmitting unit having a transmitting coil. A safety component is provided to reduce wireless power received at a second receiving coil from the wireless power transmitting unit.
Abstract:
Techniques for power regulation in a system, method, and apparatus are described herein. An apparatus for voltage regulation in a wireless power receiver may include a power switch to selectively supply a regulated voltage to a battery at a regulated current. The apparatus may also include load modulation logic to generate load modulation signaling by toggling the power switch.
Abstract:
The disclosure relates to a method, apparatus and system to wirelessly charge a device. In one embodiment, the disclosure relates to a wireless charging station having a detector to identify presence of a device at or near the charging station that would otherwise be damaged by the magnetic field of the wireless charging station. The detector detects a response signal emitted from the device under charge and determines whether to generate the desired magnetic field to charge the device or to cease the magnetic field to preserve the device from potential damage caused by the magnetic field.
Abstract:
Methods, systems, apparatus and articles of manufacture are disclosed to secure devices. An example disclosed apparatus includes a platform detector to determine when the device is within a threshold proximity to a platform, a device locking manager to initiate a locking service for the device when within the threshold proximity, and a device tampering manager to initiate a tampering remedy in response to detecting an indication of tampering.
Abstract:
An apparatus for generating a data signal comprises a processing circuit configured to generate the data signal, the data signal comprising a sequence of a first signal edge of a first type, a second signal edge of a second type, and a third signal edge of the first type, the first signal edge and the second signal edge being separated by a first time period corresponding to first data to be transmitted, and the second signal edge and the third signal edge being separated by a second time period corresponding to second data to be transmitted. An output interface circuit is configured to output the data signal.
Abstract:
An apparatus for generating a data signal comprises a processing circuit configured to generate the data signal, the data signal comprising a sequence of a first signal edge of a first type, a second signal edge of a second type, and a third signal edge of the first type, the first signal edge and the second signal edge being separated by a first time period corresponding to first data to be transmitted, and the second signal edge and the third signal edge being separated by a second time period corresponding to second data to be transmitted. An output interface circuit is configured to output the data signal.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless power transfer. For example, an apparatus may include a wireless power controller to communicate between a Wireless Power Receiver (WPR) and a Wireless Power Transmitter (WPT) an indication of a requested amount of power to be provided from the WPT to the WPR via a wireless power signal, said indication is in the form of a load modulation event within a predefined time interval, said load modulation event comprises a change in a level of a magnetic field of said wireless power signal, a duration of said load modulation event is based on the requested amount of power to be provided from the WPT to the WPR.
Abstract:
Techniques of load modulation are described herein. A wireless power transmitting unit may include a resonator to periodically transmit a short beacon having a first time period. The wireless power transmitting unit also includes circuitry coupled to the resonator. The circuitry is configured to detect a load change in the resonator when transmitting the short beacon and cause the resonator to transmit a long beacon subsequent to said transmitting the short beacon if said load change is detected. The long beacon has a second time period longer than the first time period.