Abstract:
A semiconductive device stack, includes a baseband processor die with an active surface and a backside surface, and a recess in the backside surface. A recess-seated device is disposed in the recess, and a through-silicon via in the baseband processor die couples the baseband processor die at the active surface to the recess-seated die at the recess. A processor die is disposed on the baseband processor die backside surface, and a memory die is disposed on the processor die. The several dice are coupled by through-silicon via groups.
Abstract:
Present disclosure relates to IC devices with thermal mitigation structures in the form of metal structures provided in a semiconductor material of a substrate on which active electronic devices are integrated (i.e., front-end metal structures). In one aspect, an IC device includes a substrate having a first face and a second face, where at least one active electronic device is integrated at the first face of the substrate. The IC device further includes at least one front-end metal structure that extends from the first face of the substrate into the substrate to a depth that is smaller than a distance between the first face and the second face. Providing front-end metal structures may enable improved cooling options because such structures may be placed in closer vicinity to the active electronic devices, compared to conventional thermal mitigation approaches.
Abstract:
A microelectronic device may include a substrate, a component, a first plate, a second plate, and a shield. The component may be disposed at least partially within the substrate. The first plate may be disposed on a first side of the component. The second plate may be disposed on a second side of the component. The shield may be disposed around at least a portion of a periphery of the component.
Abstract:
A system-in-package device includes at least three electrical device components arranged in a common package. A first electrical device component includes a first vertical dimension, a second electrical device component includes a second vertical dimension and a third electrical device component comprises a third vertical dimension. The first electrical device component and the second electrical device component are arranged side by side in the common package. Further, the third electrical device component is arranged on top of the first electrical device component in the common package. At least a part of the third electrical device component is arranged vertically between a front side level of the second electrical device component and a back side level of the second electrical device component.
Abstract:
A microelectronic package with two semiconductor die coupled on opposite sides of a redistribution layer 108, and at least partially overlapping with one another. At least a first of the semiconductor die includes two sets of contacts, the first group of contacts arranged at a lesser pitch relative to one another than are a second group of contacts. The first group of contacts at the larger pitch are placed to engage contacts in a redistribution layer 108. The second group of contacts at the lesser pitch are placed to engage respective contacts at the same pitch on the second semiconductor die.
Abstract:
Embodiments of the invention include a microelectronic device and methods of forming a microelectronic device. In an embodiment the microelectronic device includes a semiconductor die and an inductor that is electrically coupled to the semiconductor die. The inductor may include one or more conductive coils that extend away from a surface of the semiconductor die. In an embodiment each conductive coils may include a plurality of traces. For example, a first trace and a third trace may be formed over a first dielectric layer and a second trace may be formed over a second dielectric layer and over a core. A first via through the second dielectric layer may couple the first trace to the second trace, and a second via through the second dielectric layer may couple the second trace to the third trace.
Abstract:
A microelectronic package is described with an illuminated backside exterior. In one example, the package has a package substrate, a die attached to the package substrate, a cover over the die and the package substrate, a lamp, and a screen over the die, externally visible and optically coupled to the lamp so that when the lamp is illuminated the illumination is externally visible through the screen.
Abstract:
An electronic package that includes a substrate; a first electronic component mounted on one side of the substrate; a second electronic component mounted on an opposing side of the substrate; a core mounted to the substrate, wherein the core extends through the substrate; a first wire electrically attached to at least one of the first electronic component and the substrate, wherein the first wire is wrapped around the core to form a first coil on the one side of the substrate; and a second wire electrically attached to at least one of the second electronic component and the substrate, wherein the second wire is wrapped around the core to form a second coil on the opposing side of the substrate.
Abstract:
Conductive paths through a dielectric are described that have a high aspect ratio for semiconductor devices. In one example, a semiconductor device package has a semiconductor substrate having circuitry formed on the substrate. A plurality of conductive connection pads are on the semiconductor substrate to connect to the circuitry. A post is on each of a subset of the connection pads, the posts being formed of a conductive material. A dielectric layer is over the semiconductor substrate including over the connection pads and the posts. Filled vias are over each connection pad that is not of the subset and over each post of the subset of the connection pads and a connector os over each filled via
Abstract:
Conductive paths through a dielectric are described that have a high aspect ratio for semiconductor devices. In one example, a plurality of conductive connection pads are formed on a semiconductor substrate to connect to circuitry formed on the substrate. A post is formed on each of a subset of the connection pads, the posts being formed of a conductive material. A dielectric layer is formed over the semiconductor substrate including over the connection pads and the posts. Holes are formed by removing the dielectric layer directly over the posts. The formed holes are filled with a conductive material and a connector is formed over each filled hole.