Abstract:
Technologies for authenticating a speaker in a voice authentication system using voice biometrics include a speech collection computing device and a speech authentication computing device. The speech collection computing device is configured to collect a speech signal from a speaker and transmit the speech signal to the speech authentication computing device. The speech authentication computing device is configured to compute a speech signal feature vector for the received speech signal, retrieve a speech signal classifier associated with the speaker, and feed the speech signal feature vector to the retrieved speech signal classifier. Additionally, the speech authentication computing device is configured to determine whether the speaker is an authorized speaker based on an output of the retrieved speech signal classifier. Additional embodiments are described herein.
Abstract:
A system and method are presented for learning call analysis. Audio fingerprinting may be employed to identify audio recordings that answer communications. In one embodiment, the system may generate a fingerprint of a candidate audio stream and compare it against known fingerprints within a database. The system may also search for a speech-like signal to determine if the endpoint contains a known audio recording. If a known audio recording is not encountered, a fingerprint may be computed for the contact and the communication routed to a human for handling. An indication may be made as to if the call is indeed an audio recording. The associated information may be saved and used for future identification purposes.
Abstract:
A system and method for learning alternate pronunciations for speech recognition is disclosed. Alternative name pronunciations may be covered, through pronunciation learning, that have not been previously covered in a general pronunciation dictionary. In an embodiment, the detection of phone-level and syllable-level mispronunciations in words and sentences may be based on acoustic models trained by Hidden Markov Models. Mispronunciations may be detected by comparing the likelihood of the potential state of the targeting pronunciation unit with a pre-determined threshold through a series of tests. It is also within the scope of an embodiment to detect accents.
Abstract:
A system and method are presented for on premise and offline survivability of an interactive voice response system in a cloud telephony system. Voice interaction control may be divided from the media resources. Survivability is invoked when the communication technology between the Cloud and the voice interaction's resource provider is degraded or disrupted. The system is capable of recovering after a disruption event such that a seamless transition between failure and non-failure states is provided for a limited impact to a user's experience. When communication paths or Cloud control is re-established, the user resumes normal processing and full functionality as if the failure had not occurred.
Abstract:
A system and method are presented for optimization of audio fingerprint search. In an embodiment, the audio fingerprints are organized into a recursive tree with different branches containing fingerprint sets that are dissimilar to each other. The tree is constructed using a clustering algorithm based on a similarity measure. The similarity measure may comprise a Hamming distance for a binary fingerprint or a Euclidean distance for continuous valued fingerprints. In another embodiment, each fingerprint is stored at a plurality of resolutions and clustering is performed hierarchically. The recognition of an incoming fingerprint begins from the root of the tree and proceeds down its branches until a match or mismatch is declared. In yet another embodiment, a fingerprint definition is generalized to include more detailed audio information than in the previous definition.
Abstract:
A system and method are presented for the synthesis of speech from provided text. Particularly, the generation of parameters within the system is performed as a continuous approximation in order to mimic the natural flow of speech as opposed to a step-wise approximation of the feature stream. Provided text may be partitioned and parameters generated using a speech model. The generated parameters from the speech model may then be used in a post-processing step to obtain a new set of parameters for application in speech synthesis.
Abstract:
A system and method for learning alternate pronunciations for speech recognition is disclosed. Alternative name pronunciations may be covered, through pronunciation learning, that have not been previously covered in a general pronunciation dictionary. In an embodiment, the detection of phone-level and syllable-level mispronunciations in words and sentences may be based on acoustic models trained by Hidden Markov Models. Mispronunciations may be detected by comparing the likelihood of the potential state of the targeting pronunciation unit with a pre-determined threshold through a series of tests. It is also within the scope of an embodiment to detect accents.
Abstract:
A communication system including a media server through which communication packets are exchanged for recording and monitoring purposes is disclosed. A tap is associated with each communication endpoint allowing for cradle to grave recording of communications despite their subsequent routing or branching. An incoming communication is routed to a first tap and upon selection of a receiving party; the first tap is routed to a second tap which forwards communication packets on to the receiving party. The taps may be used to forward communication packets to any number of other taps or destinations, such as a recording device, monitoring user, or other user in the form of a conference.
Abstract:
A system and method are presented for acoustic data selection of a particular quality for training the parameters of an acoustic model, such as a Hidden Markov Model and Gaussian Mixture Model, for example, in automatic speech recognition systems in the speech analytics field. A raw acoustic model may be trained using a given speech corpus and maximum likelihood criteria. A series of operations are performed, such as a forced Viterbi-alignment, calculations of likelihood scores, and phoneme recognition, for example, to form a subset corpus of training data. During the process, audio files of a quality that does not meet a criterion, such as poor quality audio files, may be automatically rejected from the corpus. The subset may then be used to train a new acoustic model.
Abstract:
A method includes: loading, by a processor, a grammar specification defining at least one parameterizable grammar including a plurality of rules; setting, by the processor, an initial state of a grammar processor as a current state, the current state including parameters supplied to the rules; selecting, by the processor, a rule of the plurality of rules matching the parameters of the current state of the grammar processor; applying, by the processor, the selected rule to the audio and updating the current state; determining, by the processor, whether termination conditions have been met; in response to determining the termination conditions are not met, selecting, by the processor, from the plurality of rules in accordance with parameters of the updated state; and in response to determining the termination conditions are met, outputting, by the processor, a recognizer result of the current state.