Abstract:
An apparatus is described. The apparatus includes a housing including a base and sidewalls. The housing is to support a circuit board. The apparatus also includes a heat sink to be supported by the housing independent of the circuit board. The heat sink is to be thermally coupled to a semiconductor package attached to the circuit board. The heat sink is to be closer to the base of the housing than the circuit board is to be to the base of the housing.
Abstract:
Methods, systems, apparatus, and articles of manufacture to monitor heat exchangers and associated reservoirs are disclosed. An example apparatus includes programmable circuitry to detect, based on outputs of a sensor associated with a first reservoir, a coolant level of the first reservoir, the first reservoir removably coupled to a second reservoir, the first reservoir to supply coolant to the second reservoir, predict, based on the coolant level, a characteristic associated with operation of a cooling device fluidly coupled to the second reservoir, and cause an output to be presented at a user device based on the predicted characteristic.
Abstract:
Techniques for processor loading mechanisms are disclosed. In the illustrative embodiment, a heat sink is in contact with a top surface of a processor, applying a downward force on the processor. A load plate is also in contact with the processor, applying a downward force to the processor as well. The combination of the downward force from the load plate and the heat sink keep the processor in good physical contact with pins of the processor socket. The heat sink has enough force applied to the processor to be in good thermal contact with the processor without applying higher stress to the heat sink. The load plate can apply force to the processor without regard to the thermal characteristics of the load plate. Other embodiments are envisioned and described.
Abstract:
Two liquid cooling mechanisms are provided for cooling integrated circuit components immersed in an open bath immersion tank. In the first mechanism, heat generated by high-thermal design power (TDP) components is absorbed by a working fluid passing through cold plates coupled to the high-TDP components. The cold plates are part of direct liquid cooling loops attached to supply and return manifolds fluidly connected to a cooling distribution unit. In the second mechanism, integrated circuit components not coupled to any of the direct liquid cooling loops dissipate heat directly to the immersion fluid. In some embodiments, the tank is a closed bath immersion tank and heat captured by the working fluid is reclaimed and converted to electricity. Working fluid flow rate can be adjusted based on integrated circuit component power consumption levels to achieve a desired working fluid temperature as it enters an energy reclamation unit.
Abstract:
Apparatus and method to increase structural integrity of heatsinks are described herein. In embodiments, an apparatus may include a plurality of thermal dissipation fins; and a base disposed below the plurality of thermal dissipation fins, wherein the base is to include an evacuated space in which one or more thermal transport pipes and one or more stiffener structures are disposed, the evacuated space is to include a first side proximate to the plurality of thermal dissipation fins and a second side opposite the first side, and wherein a stiffener structure of the one or more stiffener structures attaches to the first or second side.
Abstract:
A processor is described having a semiconductor chip having non volatile storage circuitry. The non volatile storage circuitry has information identifying a maximum operational frequency of the processor at which the processor's operation is guaranteed for an ambient temperature that corresponds to an extreme thermal event.
Abstract:
Methods and systems may provide for identifying a thermal management setting in a computing system, and comparing the thermal management setting to valid configuration information. In addition, the thermal management setting may be modified if it does not comply with the valid configuration information, wherein the modification can cause the thermal management setting to comply with the valid configuration information. Additionally, a threat risk notification can be initiated in order to notify users of the non-compliance.
Abstract:
Methods and apparatus for immersion cooling systems are disclosed herein. An example apparatus includes a base plate, fins extending from the base plate, a tube extending along an axis through the fins, the tube including an inlet, and a slot extending along the axis, the inlet, the slot, and the fins sequentially defining a flow pathway.
Abstract:
Methods, systems, apparatus, and articles of manufacture to crimp a tube are disclosed. An example crimp disclosed herein includes a first crimp section extending between a first end of the crimp and a point along the crimp between the first end and a second end, a first inner diameter of the first crimp section constant between the first end and the point, and a second crimp section adjacent the first crimp section, the second crimp section extending between the point and the second end, a second inner diameter of the second crimp section to increase from the point to the second end.
Abstract:
In an embodiment, a processor includes at least one core and power management logic. The power management logic is to receive temperature data from a plurality of dies within a package that includes the processor, and determine a smallest temperature control margin of a plurality of temperature control margins. Each temperature control margin is to be determined based on a respective thermal control temperature associated with the die and also based on respective temperature data associated with the die. The power management logic is also to generate a thermal report that is to include the smallest temperature control margin, and to store the thermal report. Other embodiments are described and claimed.