Abstract:
Provided is a transparent conductive film including a transparent electrode layer composed of a patterned thin metal wire on at least one surface of a transparent film substrate. The line width of the wire is 5 μm or less. The wire includes a first metal layer and a second metal layer that is in contact with the first metal layer, in this order from a transparent film substrate side. Both of the first and second metal layers contain copper in an amount of 90% by weight or more. The total film thickness of the first and second metal layers is 150 to 1000 nm. The diffraction angle 2θ of the (111) plane of the second metal layer is less than 43.400° as measured using a CuKα ray as an X-ray source, and the first metal layer has crystal properties different from those of the second metal layer.
Abstract:
A substrate with a transparent electrode which includes an amorphous transparent electrode layer on a transparent film substrate. When a bias voltage of 0.1 V is applied to the amorphous transparent electrode layer, the layer has continuous regions where a current value at a voltage-applied surface is 50 nA or more. Each of the continuous regions has an area of 100 nm2 or more and the number of the continuous regions is 50/μm2 or more. In one embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. In another embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. With respect to the substrate with a transparent electrode according to the present invention, the transparent electrode layer may be crystallized in a short period of time.
Abstract:
A photoelectric conversion element for detecting the spot size of incident light. The photoelectric conversion element includes a photoelectric conversion substrate having two principal surfaces, and the substrate includes a first sensitivity part and a second sensitivity part that are separated from each other. When a sensitivity area appearing on the principal surface of the first sensitivity part is defined as a first sensitivity area and a sensitivity area appearing on the principal surface of the second sensitivity part is defined as a second sensitivity area, the first sensitivity area receives at least a portion of incident light incident on a light receiving surface, and a pattern is formed such that an increase in an irradiation area of the principal surface irradiated with the incident light reduces the ratio of the first sensitivity area to the second sensitivity area in the irradiation area.
Abstract:
Provided is a substrate with transparent electrode, which is capable of achieving both acceleration of crystallization during a heat treatment and suppression of crystallization under a normal temperature environment. In the substrate with transparent electrode, a transparent electrode thin-film formed of a transparent conductive oxide is formed on a film substrate. An underlayer that contains a metal oxide as a main component is formed between the film substrate and the transparent electrode thin-film. The underlayer and the transparent electrode thin-film are in contact with each other. The transparent electrode thin-film is amorphous, and the base layer is dielectric and crystalline.
Abstract:
A substrate with a transparent electrode which includes an amorphous transparent electrode layer on a transparent film substrate. When a bias voltage of 0.1 V is applied to the amorphous transparent electrode layer, the layer has continuous regions where a current value at a voltage-applied surface is 50 nA or more. Each of the continuous regions has an area of 100 nm2 or more and the number of the continuous regions is 50/μm2 or more. In one embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. In another embodiment, the layer has a tin oxide content of 6.5% or more and 8% or less by mass. With respect to the substrate with a transparent electrode according to the present invention, the transparent electrode layer may be crystallized in a short period of time.
Abstract:
A transparent conductive film is disclosed. It includes a transparent film base and a transparent electrode layer comprising a transparent conductive oxide layer and a patterned metal layer stacked in contact with each other. The maximum layer thickness of the transparent electrode layer is 300 nm. The metal layer has a metal pattern width of 1 μm or more and 8 μm or less, and the metal pattern coverage ratio of 0.4% or more and 3.2% or less. It is preferable that the metal layer has a layer thickness of 50 nm or more and 250 nm or less. It is also preferable that the pattern shape of the metal layer is of stripes, mesh, dots or the like.
Abstract:
The present invention relates to a substrate with a transparent electrode, which has a transparent electrode layer on at least one surface of a transparent film base material. The transparent film base material has a transparent dielectric material layer containing an oxide as a main component on a surface at the transparent electrode layer side. In one embodiment of the present invention, the transparent electrode layer is a crystalline transparent electrode layer that has a crystallinity degree of 80% or more. In this embodiment, the crystalline transparent electrode layer has a resistivity of 3.5×10−4 Ω·cm or less, a thickness of 15 nm to 40 nm, an indium oxide content of 87.5% to 95.5%, and a carrier density of 4×1020/cm3 to 9×1020/cm3, and the substrate with the transparent electrode preferably has a heat shrinkage start temperature of 75° C. to 120° C. as measured by thermomechanical analysis.
Abstract translation:本发明涉及具有透明电极的基板,其在透明膜基材的至少一个表面上具有透明电极层。 透明膜基材在透明电极层侧的表面具有含有氧化物作为主要成分的透明电介质材料层。 在本发明的一个实施例中,透明电极层是结晶度为80%以上的结晶透明电极层。 在本实施方式中,结晶透明电极层的电阻率为3.5×10 -4&OHgr·cm以下,厚度为15nm〜40nm,氧化铟含量为87.5〜95.5%,载流子密度 4×10 20 / cm 3〜9×10 20 / cm 3,通过热机械分析测定,具有透明电极的基板的热收缩开始温度优选为75℃〜120℃。
Abstract:
A patterning sheet, or the like, is suitable when a complex etching target is to be etched in a simple manner to produce an etched structure. This patterning sheet comprises a base sheet formed from an etching-solution permeable first polymer, and particles dispersed in the base sheet and formed from a second polymer, which absorbs and holds the etching solution.
Abstract:
The method for manufacturing a solar cell includes: forming a first semiconductor layer of first conductivity type on a surface of a semiconductor substrate; forming a lift-off layer containing a silicon-based material on the first semiconductor layer; selectively removing the lift-off layer and first semiconductor layer; forming a second semiconductor layer of second conductivity type on a surface having the lift-off layer and first semiconductor layer; and removing the second semiconductor layer covering the lift-off layer by removing the lift-off layer using an etching solution. The linear expansion coefficients of the semiconductor substrate and the lift-off layer satisfy the relational expression: the linear expansion coefficient of the lift-off layer
Abstract:
Provided is a substrate with transparent electrode, which is capable of achieving both acceleration of crystallization dining a heat treatment and suppression of crystallization under a normal temperature environment. In the substrate with transparent electrode, a transparent electrode thin-film formed of a transparent conductive oxide is formed on a film substrate. An underlayer that contains a metal oxide as a main component is formed between the film substrate and the transparent electrode thin-film. The underlayer and the transparent electrode thin-film are in contact with each other. The transparent electrode thin-film is amorphous, and the base layer is dielectric and crystalline.