Abstract:
An antenna-on-chip, AoC, system includes a substrate base, an artificial magnetic conductor, AMC, system with embedded guiding structures, EGS, the AMC system being located on the substrate base, and an antenna located onto the AMC system, where the EGS are electrically floating within the AMC system.
Abstract:
An example system includes a core comprised of a dielectric material; a planar resonator on the core; a conduit containing the core and the planar resonator, with the conduit including an electrically-conductive material; and a coupling that is electrically-conductive and that connects the planar resonator to the conduit to enable the conduit to function as an electrical ground for the planar resonator.
Abstract:
Provided in some embodiments are systems and methods for measuring the water content (or water-cut) of a fluid mixture. Provided in some embodiments is a water-cut sensor system that includes a helical T-resonator, a helical ground conductor, and a separator provided at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.
Abstract:
A traffic monitoring system and method for mapping traffic speed and density while preserving privacy. The system can include fixed stations that make up a network and mobile probes that are associated with vehicles. The system and method do not gather, store, or transmit any unique or identifying information, and thereby preserves the privacy of members of traffic. The system and method provide real-time traffic density and speed mapping. The system and method can further be integrated with a complementary flood monitoring system and method.
Abstract:
Provided in some embodiments are systems and methods for measuring the water content (or water-cut) of a fluid mixture. Provided in some embodiments is a water-cut sensor system that includes a T-resonator, a ground conductor, and a separator. The T-resonator including a feed line, and an open shunt stub conductively coupled to the feed line. The ground conductor including a bottom ground plane opposite the T-resonator and a ground ring conductively coupled to the bottom ground plane, with the feed line overlapping at least a portion of the ground ring. The separator including a dielectric material disposed between the feed line and the portion of the ground ring overlapped by the feed line, and the separator being adapted to electrically isolate the T-resonator from the ground conductor.
Abstract:
Disclosed are various embodiments for monitoring tracking devices capable of seamless indoor and outdoor tracking transitions. A tracking device may comprise, for example, printable circuitry and antennas combined with one or more receivers/transceivers on a substrate. The tracking device may be configured, for example, to localize the tracking device via GPS or an alternative localization strategy based on a determination of whether GPS communication is available. A modified RSSI fingerprinting methodology may be used to accurately determine a location of the tracking device using Wi-Fi access points. A device monitoring service may communicate with internal and/or external mapping API's to render a device monitoring user interface comprising a visual representation of the location of the tracking device.
Abstract:
Disclosed are various embodiments for monitoring tracking devices capable of seamless indoor and outdoor tracking transitions. A tracking device may comprise, for example, printable circuitry and antennas combined with one or more receivers/transceivers on a substrate. The tracking device may be configured, for example, to localize the tracking device via GPS or an alternative localization strategy based on a determination of whether GPS communication is available. A modified RSSI fingerprinting methodology may be used to accurately determine a location of the tracking device using Wi-Fi access points. A device monitoring service may communicate with internal and/or external mapping API's to render a device monitoring user interface comprising a visual representation of the location of the tracking device.
Abstract:
A multiphase flow measurement apparatus includes a tubular, a first microwave resonator, a second microwave resonator, and a coplanar waveguide resonator. The tubular includes a wall formed to define an inner bore configured to flow a multiphase fluid. The first microwave resonator has a first helical shape with a first longitudinal length and is configured to generate a first electric field that rotates. The second microwave resonator has a second helical shape with a second longitudinal length different from the first longitudinal length of the first microwave resonator and is configured to generate a second electric field that rotates. The first and second microwave resonators are mutually orthogonal to each other and cooperatively configured to measure a salinity of the multiphase fluid flowing through the inner bore. The coplanar waveguide resonator is configured to generate a third electric field to measure a flow rate of the multiphase fluid.
Abstract:
A sensor includes a planar T-resonator and an oscillator. The planar T-resonator can be a branched T-resonator with at least two symmetrical branches coupled to a stub. The oscillator has an input coupled to the planar T-resonator and an output. The oscillator has a negative resistance within a predetermined frequency range. The oscillator can be configured so that it has an input phase approximately equal to a phase of the planar T-resonator over a majority of the predetermined frequency range.
Abstract:
An example system includes a core comprised of a dielectric material; a planar resonator on the core; a conduit containing the core and the planar resonator, with the conduit including an electrically-conductive material; and a coupling that is electrically-conductive and that connects the planar resonator to the conduit to enable the conduit to function as an electrical ground for the planar resonator.