Abstract:
An example system is configured to detect saturation levels of a target, such as a core sample of a reservoir, using magnetic fields generated by hydrophilic magnetic nanoparticles within the target. The target contains both a hydrocarbon, such as oil or gas, and a mixture comprised of water and the hydrophilic magnetic nanoparticles. The system includes magnetic field detectors for spatial distribution across a dimension of the target. The magnetic field detectors are configured to detect a magnetic field associated with the hydrophilic magnetic nanoparticles. A data processing system is configured—for example, programmed—to determine a saturation profile of the target based on the magnetic field.
Abstract:
A leak detector includes a leak sensor. The leak sensor includes a bottom ground plane, a porous bottom dielectric substrate arranged on the bottom ground plane, a conductor arranged on the porous bottom substrate, a top dielectric substrate arranged on the conductor, and a top ground plane arranged on the top dielectric substrate. The leak detector also includes readout circuitry electrically coupled to the conductor. The readout circuitry is configured to measure a change in electrical properties in at least the porous bottom dielectric substrate.
Abstract:
Embodiments of the present disclosure aim to provide advanced multiphase flow meters utilizing advanced sensor configurations and data analysis. In an embodiment, a system is provided and configured with permittivity sensors configured around the throat section of an extended throat venturi enclosure. In a particular embodiment, the permittivity sensors in the described system are configured with a computer system or a micro-computer system, that can be configured with a computer circuit board comprising a processor, memory, networking capability, and software.
Abstract:
Provided in some embodiments are systems and methods for measuring the water content (or water-cut) of a fluid mixture. Provided in some embodiments is a water-cut sensor system that includes a helical T-resonator, a helical ground conductor, and a separator provided at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.
Abstract:
An example system includes a core comprised of a dielectric material; a planar resonator on the core; a conduit containing the core and the planar resonator, with the conduit including an electrically-conductive material; and a coupling that is electrically-conductive and that connects the planar resonator to the conduit to enable the conduit to function as an electrical ground for the planar resonator.
Abstract:
Provided in some embodiments are systems and methods for measuring the water content (or water-cut) of a fluid mixture. Provided in some embodiments is a water-cut sensor system that includes a helical T-resonator, a helical ground conductor, and a separator provided at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.
Abstract:
Provided in some embodiments are systems and methods for measuring the water content (or water-cut) of a fluid mixture. Provided in some embodiments is a water-cut sensor system that includes a T-resonator, a ground conductor, and a separator. The T-resonator including a feed line, and an open shunt stub conductively coupled to the feed line. The ground conductor including a bottom ground plane opposite the T-resonator and a ground ring conductively coupled to the bottom ground plane, with the feed line overlapping at least a portion of the ground ring. The separator including a dielectric material disposed between the feed line and the portion of the ground ring overlapped by the feed line, and the separator being adapted to electrically isolate the T-resonator from the ground conductor.
Abstract:
A multiphase flow measurement apparatus includes a tubular, a first microwave resonator, a second microwave resonator, and a coplanar waveguide resonator. The tubular includes a wall formed to define an inner bore configured to flow a multiphase fluid. The first microwave resonator has a first helical shape with a first longitudinal length and is configured to generate a first electric field that rotates. The second microwave resonator has a second helical shape with a second longitudinal length different from the first longitudinal length of the first microwave resonator and is configured to generate a second electric field that rotates. The first and second microwave resonators are mutually orthogonal to each other and cooperatively configured to measure a salinity of the multiphase fluid flowing through the inner bore. The coplanar waveguide resonator is configured to generate a third electric field to measure a flow rate of the multiphase fluid.
Abstract:
An example system is configured to detect saturation levels of a target, such as a core sample of a reservoir, using magnetic fields generated by hydrophilic magnetic nanoparticles within the target. The target contains both a hydrocarbon, such as oil or gas, and a mixture comprised of water and the hydrophilic magnetic nanoparticles. The system includes magnetic field detectors for spatial distribution across a dimension of the target. The magnetic field detectors are configured to detect a magnetic field associated with the hydrophilic magnetic nanoparticles. A data processing system is configured—for example, programmed—to determine a saturation profile of the target based on the magnetic field
Abstract:
An example system includes resonators configured for spatial distribution across a dimension of a target, with the resonators each being configured to transmit signals into the target and to receive signals through the target; and a data processing system to generate, based on the signals transmitted and received, a saturation profile of the target.