Abstract:
A direction detection device, according to one embodiment of the present invention, comprises: a dielectric layer; a first electrode layer which is arranged on a first surface of the dielectric layer, and which comprises a plurality of first electrode patterns arranged in a first direction; a second direction arranged on a second surface of the dielectric layer, which faces the first surface; a capacitance detection unit which detects changes in capacitance due to time difference between a first region and a second region, wherein in the first region, at least one selected among the plurality of first electrode patterns overlaps the second electrode layer, and in the second region, at least one selected from the plurality of the remaining first electrode patterns overlaps the second electrode layer; and a direction detection unit which connects to the capacitance detection unit, and detects a movement direction on the basis of the time difference between the first region and the second region.
Abstract:
Provided is a printed circuit board including: a support substrate including a first area in which a light emitting device is mounted, and a second area extending from the first area; a bending part which is configured such that a part between the first area and the second area is bent; a through hole passing through the bending part; a connection wiring connected to the light emitting device and disposed on the bending part; and a wiring connected to the connection wiring.
Abstract:
Provided is a printed circuit board, including: a support substrate including a first region in which light emitting elements are mount, a second region extending from the first region, and a bending portion between the first region and the second region, an insulating substrate on the support substrate, wiring portions on the insulating substrate, and a protective layer on the wiring portions.
Abstract:
Provided is a circuit board including: a support substrate; a plurality of light emitting devices mounted on the support substrate; and a device protection portion surrounding one of the light emitting devices, or three or more surfaces of the plurality of light emitting devices.
Abstract:
Provided is a circuit board including: a support substrate including a first region and a second region extending to be bent from the first region; light emitting devices mounted to the first region of the support substrate; and a bending portion bent between the first region and the second region, wherein the bending portion comprises: an interconnection line arrangement portion that crosses an interconnection line; and an interconnection line protection portion disposed on the periphery of the interconnection line, wherein the interconnection line protection portion protrudes more than the interconnection line arrangement portion.
Abstract:
Provided are a heat radiation printed circuit board and a method of manufacturing the same, the heat radiation printed circuit board being produced by the method including: forming a circuit layer having an insulating layer, a circuit pattern and a solder resist on a first area of one surface of a metal substrate; and forming a bending part in a second area, in which the insulating layer is not formed, by bending the metal substrate, whereby a crack can be prevented in advance from being generated in the insulating layer, and durability and reliability of the heat radiation printed circuit board and a backlight unit applying the same can be improved.
Abstract:
Provided is a circuit board including: a supporting substrate; light emitting elements mounted to the supporting substrate; a through hole passing through the supporting substrate; and a connector inserted into the through hole and for supplying an electric current to the light emitting elements.
Abstract:
Provided are a heat radiation printed circuit board and a method of manufacturing the same, the heat radiation printed circuit board being produced by the method including: forming a circuit layer having an insulating layer, a circuit pattern and a solder resist on a first area of one surface of a metal substrate; and forming a bending part in a second area, in which the insulating layer is not formed, by bending the metal substrate, whereby a crack can be prevented in advance from being generated in the insulating layer, and durability and reliability of the heat radiation printed circuit board and a backlight unit applying the same can be improved.
Abstract:
A pressure sensing insole according to an embodiment of the present invention includes: a first electrode layer including a first conductive region; a first adhesive layer disposed on the first electrode layer and including an insulating region; an intermediate layer disposed on the first adhesive layer; a second adhesive layer disposed on the intermediate layer and including an insulating region; and a second electrode layer disposed on the second adhesive layer and including a second conductive region.
Abstract:
A pressure sensor comprises: a first electrode layer; a second electrode layer; and an intermediate layer disposed between the first electrode layer and the second electrode layer, wherein the intermediate layer changes in resistance, depending on a change in at least one of a thickness or a volume thereof. In addition, the intermediate layer comprises: a foam having porous regions dispersed in a non-porous region thereof; and a conductive material being dispersed in the foam and being more conductive than the foam.