Abstract:
The invention relates to a device for measuring light-activated fluorescence of at least one coating that contains a fluorescent material, and its use for measuring fluid materials which cause fluorescence-quenching in at least one of the fluorescent coatings. To activate the fluorescence, at least one first light wave-guide is directed onto at least one coating applied to a support and the fluorescent light is directed at a detector by means of at least one-second light wave-guide, in order to determine the intensity of the fluorescent light. The end faces of the different fluorescent light wave guides are then arranged to have overlapping entry and/or exit cones and/or be of a shape substantially identical to the at least one coating containing a fluorescent material, in such a way that an accurate measurement of the fluorescence intensity can be attained, and that the light source(s), light wave guides and the detector(s) are lodged in a measuring head.
Abstract:
The invention relates to packages for materials or the mixture thereof, in particular for perishable products such as food or pharmaceutical products. The aim of said invention is to deliver means to make it possible to check the state of said for materials or the mixture thereof without destroying the package thereof. For this purpose, the inventive packaging comprises an optically sensitive element which is embodied in the form of a sensitive membrane or film or exhibits the properties thereof. As a result, the specific variations of the film thicknesses, scattered light variations, optical refractive index and spectral variations are used.
Abstract:
The invention relates to a device and a method for optically measuring the concentrations of a substance contained in a fluid medium. With the solution according to the invention the accuracy of measurement is to be increased in accordance with the object over a greater period without any additional calibration measurements, and ageing of a fluorescent substance within a layer is to be taken into consideration, in particular, and the long-time drift of such a measurement system is to be reduced. To achieve this, a layer containing such a known fluorescent substance or layer system are employed in which fluorescence is excited. The fluorescence changes depending on a substance concentration or a pH-value, and the intensity varying correspondingly in time or phase shift of the fluorescent light is allowed to be measured with at least one optical detector with the known intensity or phase of the fluorescence exciting light. On that occasion, the exciting light is directed upon at least two areas being optically separated from each other of a layer containing a fluorescent substance or two equal layers each having a different excitation energy during the useful life, and measured values of fluorescence intensity, fluorescence decay times or phase shifts being locally and/or timely separated of both areas or layers are fed to an electronic comparative and correction value determination unit.