Abstract:
Some embodiments include apparatuses and methods of forming such apparatuses. One of the apparatus includes first memory cells located in different levels in a first portion of the apparatus, second memory cells located in different levels in a second portion of the apparatus, a switch located in a third portion of the apparatus between the first and second portions, first and second control gates to access the first and second memory cells, an additional control gate located between the first and second control gates to control the switch, a first conductive structure having a thickness and extending perpendicular to the levels in the first portion of the apparatus, a first dielectric structure between the first conductive structure and charge-storage portions of the first memory cells, a second dielectric structure having a second thickness between the second conductive structure and a sidewall of the additional control gate, the second thickness being greater than the first thickness.
Abstract:
A surface modification composition comprising a silylation agent comprising a silyl acetamide, a silylation catalyst comprising a perfluoro acid anhydride, an amine-based complexing agent, and an organic solvent. Methods of modifying a silicon-based material and methods of forming high aspect ratio structures on a substrate are also disclosed.
Abstract:
A method of forming a memory cell includes forming one of multivalent metal oxide material or oxygen-containing dielectric material over a first conductive structure. An outer surface of the multivalent metal oxide material or the oxygen-containing dielectric material is treated with an organic base. The other of the multivalent metal oxide material or oxygen-containing dielectric material is formed over the treated outer surface. A second conductive structure is formed over the other of the multivalent metal oxide material or oxygen-containing dielectric material.