Abstract:
A laminated ceramic electronic component includes an embedded portion formed in the periphery of an external terminal electrode so as to extend and be embedded in a component main member defined by ceramic layers, whereby affects of a small edge angle are eliminated.
Abstract:
A monolithic ceramic substrate includes a green laminate having a plurality of green functional ceramic layers including a functional ceramic material, green support layers including a ceramic material that does not sinter at a sintering temperature for the green functional ceramic material to prevent shrinkage of the functional ceramic layers, first conductor patterns including a thin-film conductor, and second conductor patterns including a thick-film conductor. The green laminate is fired at the sintering temperature for the green functional ceramic material.
Abstract:
In a green laminate body including a plurality of base green layers and a plurality of constraining green layers for forming a monolithic ceramic substrate by using a non-shrinking process, when the thicknesses of the base green layers differ from each other, a thicker base green layer shrinks largely during sintering, and hence, the resulting monolithic ceramic substrate may warp in some cases. In order to solve this problem, the constraining green layers, which are in contact with the main surfaces of the individual base green layers, have different thicknesses so that a relatively thicker constraining green layer is in contact with a relatively thicker base green layer, and a relatively thinner constraining green layer is in contact with a relatively thinner base green.
Abstract:
A chip capacitor includes a multilayer body composed of a plurality of stacked sheet layers made of ceramics; capacitor electrodes and via hole electrodes disposed inside the multilayer body; and outer electrodes formed on only main surfaces of the multilayer body such that they are electrically connected to the capacitor electrodes via the via hole electrodes. Some of the capacitor electrodes are electrically connected by the via hole electrodes, and the other capacitor electrodes are electrically connected by other via hole electrodes.
Abstract:
A multilayer integrated substrate includes breaking grooves arranged in a grid pattern so as to section the main surface of the substrate into a plurality of blocks, and also includes fracture-preventing conductor films arranged so as to cross the breaking grooves. The fracture-preventing conductor films contain a metal component that prevents undesirable fracturing of the multilayer integrated substrate along the breaking grooves.
Abstract:
A multilayer ceramic electronic component includes a laminated ceramic body provided with terminal electrodes on side surfaces thereof and a cover for covering the laminated ceramic body. Ground terminal electrodes are provided in notches provided in opposed side surfaces opposing of the laminated ceramic body, a plurality of terminal electrodes is arranged in parallel in each of notches provided in the other side surfaces opposing each other. These terminal electrodes are formed by dividing terminal via hole conductors. The cover is disposed so as to cover elements mounted on the laminated ceramic body, and foot portions of the cover are disposed in the notches and are bonded to the ground terminal electrodes.
Abstract:
A multilayer ceramic electronic component includes an electronic component body a notch formed in a side surface of the electronic component body, and a joining electrode formed by dividing a joining via hole conductor is formed at a portion of an inside surface defining the notch. A cover that is mounted to the electronic component body has a leg, with the leg of the cover being positioned inside the notch. By joining the leg to the joining electrode, the cover is secured to the electronic component body. The multilayer ceramic electronic component includes an LGA (land grid array) type external terminal electrode. The multilayer ceramic electronic component makes it possible to mount a cover for covering a mounted component without increasing the planar dimensions of the electronic component and without decreasing an area for mounting a component to be mounted.
Abstract:
There is disclosed a method of producing a ceramic multilayer substrate by laminating a plurality of glass-ceramic green sheets made of a glass-ceramic containing an organic binder and a plasticizer to form a laminate; and firing the laminate; further comprising: applying to or overlaying on the surfaces of the glass-ceramic green sheets inorganic compositions, the sintering temperature of the inorganic compositions being higher than that of the glass-ceramic green sheets; laminating a plurality of the glass-ceramic green sheets having the inorganic compositions applied to or overlaid on the surfaces of the glass-ceramic green sheets respectively, to form a part of the laminate; and laminating a plurality of the glass-ceramic green sheets to form the other part of the laminate.
Abstract:
A multilayer integrated substrate includes breaking grooves arranged in a grid pattern so as to section the main surface of the substrate into a plurality of blocks, and also includes fracture-preventing conductor films arranged so as to cross the breaking grooves. The fracture-preventing conductor films contain a metal component that prevents undesirable fracturing of the multilayer integrated substrate along the breaking grooves.
Abstract:
A circuit-forming charging powder allowing circuit patterns to resist being peeled off a printing object when the powder is used for printing a circuit pattern by an electrophotographic method on the object, wherein the circuit-forming charging powder has a conductive metal powder, a charge control agent and an adhesion reinforcing agent combined with a heat-melt resin and a method for producing the circuit-forming charging powder, as well as printed objects and multilayer wiring boards are described.