Abstract:
In a laminated ceramic electronic component, the sectional size of via-hole conductors extending through thicker ceramic layers is larger than that of via-hole conductors extending through thinner ceramic layers. This makes it possible to facilitate filling of a conductive paste for the via-hole conductors having a larger height and to inhibit a conductive paste for the via-hole conductors having a smaller height from being lost after filling.
Abstract:
A chip capacitor includes a multilayer body composed of a plurality of stacked sheet layers made of ceramics; capacitor electrodes and via hole electrodes disposed inside the multilayer body; and outer electrodes formed on only main surfaces of the multilayer body such that they are electrically connected to the capacitor electrodes via the via hole electrodes. Some of the capacitor electrodes are electrically connected by the via hole electrodes, and the other capacitor electrodes are electrically connected by other via hole electrodes.
Abstract:
A method for manufacturing an electronic component includes forming an aggregate electronic component including a plurality of electronic components and dividing the aggregate electronic component to separate the plurality of electronic components to form individual electronic components. Through-holes are formed in a laminated body providing an aggregate electronic component wherein via-hole conductors are arranged so as not pass through the aggregate electronic component in a thickness direction thereof, the via-hole conductors are divided by the through-holes, and each divided portion provides an external terminal electrode. Then, by dividing the laminated body along the dividing lines passing through the through-holes, a plurality of individual electronic components are produced.
Abstract:
An electronic component includes via holes having an elongated cross section, which are provided in a ceramic green molded product provided with a plurality of terminal conductors to define external terminal electrodes. Thereby, a portion of each terminal conductor is exposed on the inner wall of a piecing hole. The ceramic molded product is fired to obtain a ceramic sintered product. Then, the sintered product is split along cutting grooves passing through the via-holes, wherein ceramic electronic components are produced.
Abstract:
A method for manufacturing an electronic component includes forming an aggregate electronic component including a plurality of electronic components and dividing the aggregate electronic component to separate the plurality of electronic components to form individual electronic components. Through-holes are formed in a laminated body providing an aggregate electronic component wherein via-hole conductors are arranged so as not pass through the aggregate electronic component in a thickness direction thereof, the via-hole conductors are divided by the through-holes, and each divided portion provides an external terminal electrode. Then, by dividing the laminated body along the dividing lines passing through the through-holes, a plurality of individual electronic components are produced.
Abstract:
There is disclosed a method of producing a ceramic multilayer substrate by laminating a plurality of glass-ceramic green sheets made of a glass-ceramic containing an organic binder and a plasticizer to form a laminate; and firing the laminate; further comprising: applying to or overlaying on the surfaces of the glass-ceramic green sheets inorganic compositions, the sintering temperature of the inorganic compositions being higher than that of the glass-ceramic green sheets; laminating a plurality of the glass-ceramic green sheets having the inorganic compositions applied to or overlaid on the surfaces of the glass-ceramic green sheets respectively, to form a part of the laminate; and laminating a plurality of the glass-ceramic green sheets to form the other part of the laminate.
Abstract:
A monolithic electronic component includes a composite body having a plurality of stacked ceramic layers. The ceramic layers include interconnecting conductors provided in each of the ceramic layers, including first terminals, arranged on a first end surface in the stacking direction of the composite body, for defining connections with an interconnection substrate, and second terminals, arranged on a second end surface opposite of the first end surface of the composite, for defining connections with a mounted component. The first terminals are defined by conductor layers provided on the first end surface and the second terminals are defined by exposed end surfaces of terminal via-hole conductors which extend from the inner portion of the composite to the second end surface. The exposed end surfaces of the terminal via-hole conductors are flat and are on substantially the same plane as the second end surface.
Abstract:
In a green laminate body including a plurality of base green layers and a plurality of constraining green layers for forming a monolithic ceramic substrate by using a non-shrinking process, when the thicknesses of the base green layers differ from each other, a thicker base green layer shrinks largely during sintering, and hence, the resulting monolithic ceramic substrate may warp in some cases. In order to solve this problem, the constraining green layers, which are in contact with the main surfaces of the individual base green layers, have different thicknesses so that a relatively thicker constraining green layer is in contact with a relatively thicker base green layer, and a relatively thinner constraining green layer is in contact with a relatively thinner base green.
Abstract:
A monolithic electronic component includes a composite body having a plurality of stacked ceramic layers. The ceramic layers include interconnecting conductors provided in each of the ceramic layers, including first terminals, arranged on a first end surface in the stacking direction of the composite body, for defining connections with an interconnection substrate, and second terminals, arranged on a second end surface opposite of the first end surface of the composite, for defining connections with a mounted component. The first terminals are defined by conductor layers provided on the first end surface and the second terminals are defined by exposed end surfaces of terminal via-hole conductors which extend from the inner portion of the composite to the second end surface. The exposed end surfaces of the terminal via-hole conductors are flat and are on substantially the same plane as the second end surface.
Abstract:
A multilayer ceramic electronic component includes an electronic component body a notch formed in a side surface of the electronic component body, and a joining electrode formed by dividing a joining via hole conductor is formed at a portion of an inside surface defining the notch. A cover that is mounted to the electronic component body has a leg, with the leg of the cover being positioned inside the notch. By joining the leg to the joining electrode, the cover is secured to the electronic component body. The multilayer ceramic electronic component includes an LGA (land grid array) type external terminal electrode. The multilayer ceramic electronic component makes it possible to mount a cover for covering a mounted component without increasing the planar dimensions of the electronic component and without