Abstract:
The present invention relates to catalytic conversion of ketoacids, including methods for increasing the molecular weight of ketoacids. The method can include providing in a reactor a raw material having at least one ketoacid. The raw material is then subjected to one or more C-C-coupling reaction(s) in the presence of an ion exchange resin catalyst to produce at least one ketocid dimer. The method can include providing in a reactor a feedstock having the at least one ketoacid dimer and subjecting the feedstock to one or more C-C-coupling reaction(s) at a temperature of at least 200° C.
Abstract:
A method is disclosed of purifying a recycled or renewable organic material, wherein the recycled or renewable organic material includes more than 1 ppm silicon as silicon compounds and/or more than 10 ppm phosphorous as phosphorous compounds. The method can include providing a feed of the lipid material; heat treating the organic material in presence of an adsorbent and the filtering organic material and hydrotreating the lipid material in a presence of a hydrotreating catalyst to obtain purified hydrotreated organic material having less than 20% organic material and/or less than 30% of the original phosphorous content of the organic material.
Abstract:
A method is disclosed of producing hydrocarbons from a recycled or renewable organic material, wherein the recycled or renewable organic material contains from 5 to 30 wt-% oxygen as organic oxy-gen compounds and from 1 to 1000 ppm phosphorous as phosphorous compounds. Exemplary methods include (a) providing the recycled or renewable organic material (c) thermally cracking the recycled or renewable organic material thereby reducing the oxygen and phosphorous content of the recycled or renewable organic material to obtain (i) a vapor fraction containing a major part of volatiles, and (ii) a thermally cracked recycled or renewable organic material fraction containing less oxygen and less phosphorous than the recycled or renewable organic material provided in step (a); and (f) hydrotreating the thermally cracked recycled or renewable organic material fraction in a presence of a hydrotreating catalyst; to obtain hydrocarbons containing less than 1 wt % oxygen and less phosphorous than the recycled or re-newable organic material provided in step (a).
Abstract:
A method is disclosed of purifying a recycled or renewable organic material, wherein the recycled or renewable organic material contains more than 20 ppm Cl. Exemplary methods include (a) providing the recycled or renewable organic material; (b) purifying the organic recycled or renewable organic material to obtain a purified recycled or renewable organic material, and (c) hydrotreating the purified recycled or renewable organic material in a presence of a hydrotreating catalyst at a temperature from 270 to 380° C. under pressure from 4 to 20 MPa and under continuous hydrogen flow; to obtain purified hydrotreated recycled or renewable organic material.
Abstract:
Provided are fuel components, a method for producing fuel components, use of the fuel components and fuel containing the fuel components based on 5-nonanone.
Abstract:
Catalytic conversion of ketoacids is disclosed, including methods for increasing the molecular weight of ketoacids. An exemplary method includes providing in a reactor a feedstock having at least one ketoacid. The feedstock is then subjected to one or more C—C-coupling reaction(s) in the presence of a catalyst system having a first metal oxide and a second metal oxide.