Abstract:
A process for post synthesis treatment of ZSM-5 catalyst for converting ethylene to liquid fuel products providing substantially improved catalyst life. The treatment comprises either a base treatment, an acid treatment or a two-step treatment where one is with an acid and the other is with a base. The base treatment is provided by a weak sodium hydroxide such as less than 1 Molar concentration. The acid treatment is stronger acid where, for example, a hydrogen chloride solution at greater than 2 Molar concentration is used.
Abstract:
A process is described for flowing an oxygenate feed over a catalyst in an adiabatic fixed bed reactor to product a reactor effluent and heat. The reaction inside the adiabatic fixed bed reactor occurs at a reaction temperature from about 200° C. to about 375° C. The reactor effluent is then condensed to separate the liquid products and the gaseous products. A separation step then separates the gaseous products into hydrogen and off-gas.
Abstract:
A catalyst for steam reforming. The catalyst comprises an active site of NiCu or NiCuZn, from about 15 wt % to about 25 wt % of the catalyst, a composition comprising at least one promoter and at least one support modifier, from about 5 wt % to about 30 wt % of the catalyst, and a support.
Abstract:
Processes for producing liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The hydrocarbon feed stream is separated into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. The first fraction is catalytically activated to produce an activation effluent comprising olefins and aromatics, while the second fraction is isomerized to convert at least a portion of the n-pentane to isopentane, then combined with the hydrocarbon feed stream to allow the newly-produced isopentane to be separated into the first fraction. Finally, the activation effluent is oligomerized. The process produced increased yields of products that meet specifications for a blend component of liquid transportation fuels.
Abstract:
The present disclosure relates generally processes and systems for converting a mixture of light hydrocarbons to liquid transportation fuels by first cracking the light hydrocarbons to an intermediate comprising olefins, which is converted by contacting with a catalyst comprising at least one zeolite in two separate conversion stages with an intervening recovery of liquid product. The first stage conversion favors oligomerization of larger olefins to form diesel range products that are collected prior to directing unconverted smaller olefins to be oligomerized in a second stage conversion conducted at a higher temperature and lower pressure.
Abstract:
Methods and apparatus relate to treating fluid to at least reduce selenium content within the fluid. The treating includes conditioning stages to alter a composition of the fluid prior to removal of the selenium content from the fluid. The composition of the fluid after the conditioning stages facilitates the removal of the selenium content or at least limits detrimental impact to selenium removal efficiency.
Abstract:
The process describes performing electrolysis on an alkaline oxygenate mixture to produce hydrogen. In this process the electrolysis does not form any significant amounts of oxygen.
Abstract:
Methods and apparatus relate to treating fluid to at least reduce selenium content within the fluid. The treating includes conditioning stages to alter a composition of the fluid prior to removal of the selenium content from the fluid. The composition of the fluid after the conditioning stages facilitates the removal of the selenium content or at least limits detrimental impact to selenium removal efficiency.
Abstract:
The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction. Certain embodiments additionally comprise mixing at least a portion of the two effluents and contacting with either an oligomerization catalyst or alkylation catalyst to provide enhanced yields of upgraded hydrocarbon products that are suitable for use as a blend component of liquid transportation fuels or other value-added chemical products.
Abstract:
The present disclosure relates generally processes and systems for converting a C2-C7 light alkanes feed to liquid transportation fuels or value-added chemicals. The feed is contacted with an aromatization catalyst at a temperature and pressure that selectively converts C4 and larger alkanes to an intermediate product comprising monocyclic aromatics and olefins. Following separation of the aromatics and C5+ hydrocarbons from the intermediate product, unconverted C2-C3 alkanes are thermally-cracked to produce olefins that are subsequently oligomerized to produce a liquid transportation fuel blend stock or value-added chemicals.