Abstract:
A photon detector including a graphene-insulating-superconducting junction configured as a temperature sensor. Photons are absorbed by the graphene sheet of the graphene-insulating-superconducting junction, each absorbed photon causing a temporary increase in the temperature of the graphene sheet, and a corresponding change in the differential impedance of the graphene-insulating-superconducting junction. The graphene-insulating-superconducting junction is part of a resonant circuit connected as a shunt load between a radio frequency input transmission line and a radio frequency output transmission line. The transmission S-parameter from input to output is affected by the impedance of the resonant circuit which in turn is affected by the differential impedance of the graphene-insulating-superconducting junction, and therefore by the temperature of the graphene sheet. The absorption of photons is detected by detecting changes in the transmission S-parameter indicating temperature changes caused by the absorption of a photon.
Abstract:
A transistor. In some embodiments, the transistor includes a first superconducting source-drain, a second superconducting source-drain, a graphene channel including at least a portion of a graphene sheet, and a conductive gate. The first superconducting source-drain, the second superconducting source-drain, and the graphene channel together form a Josephson junction having a critical current. The graphene channel forms a current path between the first superconducting source-drain and the second superconducting source-drain. The conductive gate is configured, upon application of a electric field across the conductive gate and the graphene channel by applying a voltage, to modify the critical current.
Abstract:
A bolometer. In one embodiment a graphene sheet is configured to absorb electromagnetic waves. The graphene sheet has two contacts connected to an amplifier, and a power detector connected to the amplifier. Electromagnetic power in the evanescent electromagnetic waves is absorbed in the graphene sheet, heating the graphene sheet. The power of Johnson noise generated at the contacts is proportional to the temperature of the graphene sheet. The Johnson noise is amplified and the power in the Johnson noise is used as a measure of the temperature of the graphene sheet, and of the amount of electromagnetic wave power absorbed by the graphene sheet.
Abstract:
A detector for detecting single photons of infrared radiation or longer wavelength electromagnetic radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In other embodiments a transmission line or antenna is coupled to the graphene sheet and guides longer-wavelength photons to the graphene sheet. A photon absorbed by the graphene sheet heats the graphene sheet. Part of the graphene sheet is part of the Josephson junction as the weak link, and a constant bias current is driven through the Josephson junction; an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
Abstract:
A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. An infrared photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
Abstract:
A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. An infrared photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
Abstract:
A tunable oscillator including a Josephson junction. In some embodiments, the tunable oscillator includes a first superconducting terminal, a second superconducting terminal, a graphene channel including a portion of a graphene sheet, and a conductive gate. The first superconducting terminal, the second superconducting terminal, and the graphene channel together may form a Josephson junction having an oscillation frequency, and the conductive gate may be configured, upon application of a voltage across the conductive gate and the graphene channel, to modify the oscillation frequency.
Abstract:
A method for classifying images of oligolayer exfoliation attempts. In some embodiments, the method includes forming a micrograph of a surface, and classifying the micrograph into one of a plurality of categories. The categories may include a first category, consisting of micrographs including at least one oligolayer flake, and a second category, consisting of micrographs including no oligolayer flakes, the classifying comprising classifying the micrograph with a neural network.
Abstract:
A transistor. In some embodiments, the transistor includes a first superconducting source-drain, a second superconducting source-drain, a graphene channel including at least a portion of a graphene sheet, and a conductive gate. The first superconducting source-drain, the second superconducting source-drain, and the graphene channel together form a Josephson junction having a critical current. The graphene channel forms a current path between the first superconducting source-drain and the second superconducting source-drain. The conductive gate is configured, upon application of a electric field across the conductive gate and the graphene channel by applying a voltage, to modify the critical current.
Abstract:
An amplifier. In some embodiments, the amplifier includes a resonant circuit having a resonant frequency, a pump input, a signal input, and a signal output. The resonant circuit may include a Josephson junction connected to the pump input, the Josephson junction being a superconducting-normal-superconducting junction having two superconducting terminals and being configured to adjust the resonant frequency of the resonant circuit based on a signal received at the pump input.