Abstract:
A method of resolving a number of photons received by a photon detector includes optically coupling a waveguide to a superconducting wire having alternating narrow and wide portions; electrically coupling the superconducting wire to a current source; and electrically coupling an electrical contact in parallel with the superconducting wire. The electrical contact has a resistance less than a resistance of the superconducting wire while at least one narrow portion of the superconducting wire is in a non-superconducting state. The method includes providing to the superconducting wire, from the current source, a current configured to maintain the superconducting wire in a superconducting state in the absence of incident photons; receiving one or more photons via the waveguide; measuring an electrical property of the superconducting wire, proportional to a number of photons incident on the superconducting wire; and determining the number of received photons based on the electrical property.
Abstract:
The various embodiments described herein include methods, devices, and systems for fabricating and operating photodetector circuitry. In one aspect, a photon detector system includes: (1) a first superconducting wire having a first threshold superconducting current; (2) a second superconducting wire having a second threshold superconducting current; (3) a resistor coupled to the first wire and the second wire; (4) current source(s) coupled to the first wire and configured to supply a current that is below the second threshold current; and (3) a second circuit coupled to the second wire. In response to receiving light at the first wire, the first wire transitions from a superconducting state to a non-superconducting state. In response to receiving light at the second wire while the first wire is in the non-superconducting state, the second wire transitions to a non-superconducting state, redirecting the first current to the second circuit.
Abstract:
The generation of photocurrent in an ideal two-dimensional Dirac spectrum is symmetry forbidden. In sharp contrast, a three-dimensional Weyl semimetal can generically support significant photocurrent due to the combination of inversion symmetry breaking and finite tilts of the Weyl spectrum. To realize this photocurrent, a noncentrosymmetric Weyl semimetal is coupled to a pair of electrodes and illuminated with circularly polarized light without any voltage applied to the Weyl semimetal. The wavelength of the incident light can range over tens of microns and can be adjusted by doping the Weyl semimetal to change its chemical potential.
Abstract:
Utilizing a quench time to deionize an ultraviolet (UV) sensor tube are described herein. One method includes monitoring firing events within a UV sensor tube, where a particular firing event initiates arming the UV sensor tube, initiating a quench time to deionize the UV sensor tube, where the quench time includes, disarming the UV sensor tube to prevent a firing event.
Abstract:
Utilizing a quench time to deionize an ultraviolet (UV) sensor tube are described herein. One method includes monitoring firing events within a UV sensor tube, where a particular firing event initiates arming the UV sensor tube, initiating a quench time to deionize the UV sensor tube, where the quench time includes, disarming the UV sensor tube to prevent a firing event.
Abstract:
A semiconductor radiation detector comprises a detector chip having a front side and a back side, and a support plate on the back side of the detector chip, having electric connections with said detector chip. A base plate has a thermoelectric cooler attached to it and contact pins protruding from the base plate towards said detector chip. A bonding plate is on an opposite side of said thermoelectric cooler than said base plate, and first wire bonded connections go between said contact pins and said bonding plate. A joint plate is between said bonding plate and said support plate, and electric connections between said support plate and said bonding plate go through said joint plate.
Abstract:
A device includes at least one array of photoconductors, at least one bias voltage source, and at least one photoconductor readout circuit. Each photoconductor is configured for exhibiting an electrical resistance dependent on an illumination of its light-sensitive region, and at least one photoconductor of the array is designed as characterizing photoconductor. The bias voltage source is configured for applying at least one alternating bias voltage to the characterizing photoconductor or at least one direct current (DC) bias voltage to the characterizing photoconductor. The photoconductor readout circuit is configured for determining of a response voltage of the characterizing photoconductor generated in response to the bias voltage. The response voltage is proportional to a variable characterizing the array of photoconductors. The photoconductor readout circuit configured for determining of the response voltage of the characterizing photoconductor during operation of the array of photoconductors.
Abstract:
Methods, systems, and apparatus, for a stray-light testing station. In one aspect, the stray-light testing station includes an illumination assembly including a spatially extended light source and one or more optical elements arranged to direct a beam of light from the spatially extended light source along an optical path to an optical receiver assembly including a lens receptacle configured to receive a lens module and position the lens module in the optical path downstream from the parabolic mirror so that the lens module focuses the beam of light from the spatially extended light source to an image plane, and a moveable frame supporting the optical receiver assembly including one or more adjustable alignment stages to position the optical receiver assembly relative to the illumination assembly such that the optical path of the illumination assembly is within a field of view of the optical receiver assembly.
Abstract:
A receiver according to an embodiment is a terahertz band receiver including an antenna configured to receive a terahertz band signal reflected or transmitted from a measurement target, a detector configured to receive a differential signal including a first input signal VTHz and a second input signal −VTHz with phase difference of 180° to each other from the antenna to detect a voltage, and operate in a concurrent mode, and a buffer amplifier configured to amplify and output a signal detected by the detector.
Abstract:
The present invention discloses a design for reducing a dark count rate of a superconducting nanowire single photon detector (SNSPD) based on a two-wire structure, which includes: intertwining two niobium nitride nanowires that are not crossed to form an SNSPD of a two-wire structure; regulating and controlling behaviors of one nanowire by adopting the other nanowire, and regulating bias current to be close to superconducting critical current; introducing an optical signal into a photosensitive area of the detector by adopting an optical fiber; outputting two channels of signals respectively through the two nanowires to make the dark count rates of the two nanowires mutually excited; and through a voltage comparator and an exclusive-OR gate, reducing a dark count rate signal, and retaining a photon response signal. The generation of the dark count rate of the detector can be inhibited effectively by the unique performance of the SNSPD of the two-wire structure; and by improving the process latter, the coupling efficiency of the dark count rate of the SNSPD is further improved, which is expected to completely inhibit the dark count rate of the SNSPD system and greatly increase the signal-to-noise ratio of the detector.